Suppr超能文献

预测术中输血风险模型的开发与验证

Development and Validation of a Risk Model to Predict Intraoperative Blood Transfusion.

作者信息

Eyth Annika, Borngaesser Felix, Rudolph Maíra I, Paschold Béla-Simon, Ramishvili Tina, Kaiser Lars, Tam Christopher W, Wongtangman Karuna, Eikermann Greta, Garg Shweta, Karasick Michael H, Kiyatkin Michael E, Kinkhabwala Milan M, Forest Stephen J, Leff Jonathan, Zhang Ling, Fassbender Philipp, Karaye Ibraheem, Steinbicker Andrea U, Schaefer Maximilian S, Eikermann Matthias, Kim Se-Chan

机构信息

Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.

University Clinic for Anesthesiology, Intensive Care, Emergency Medicine, and Pain Therapy, Carl von Ossietzky Universität Oldenburg and Klinikum Oldenburg AöR, Oldenburg, Germany.

出版信息

JAMA Netw Open. 2025 Apr 1;8(4):e255522. doi: 10.1001/jamanetworkopen.2025.5522.

Abstract

IMPORTANCE

Crossmatched packed red blood cells (pRBC) that are not transfused result in significant waste of this scarce resource. Efficient utilization should be part of a patient blood management strategy.

OBJECTIVE

To develop and validate a prediction model to identify surgical patients at high risk of intraoperative pRBC transfusion.

DESIGN, SETTING, AND PARTICIPANTS: This prognostic study used hospital registry data from 2 quaternary hospital networks from January 2016 to June 2021 (development: Montefiore Medical Center [MMC], Bronx, New York), June 2021 to February 2023 (internal validation: MMC), and January 2008 to June 2022 (external validation: Beth Israel Deaconess Medical Center [BIDMC], Boston, Massachusetts). Participants were patients aged 18 years or older undergoing surgery.

MAIN OUTCOME AND MEASURES

The outcome was intraoperative transfusion of 1 or more pRBC units. Based on a priori-defined candidate predictors, stepwise backward regression was applied to develop a computational model of independent predictors for intraoperative pRBC transfusion.

RESULTS

The development and validation cohorts consisted of 816 618 patients (273 654 at MMC: mean [SD], age 57.5 [17.2] years; 161 481 [59.0%] female; 542 964 at BIDMC: mean [SD] age, 56.0 [17.1] years; 310 272 [57.1%] female). Overall, 18 662 patients (2.3%) received at least 1 unit of pRBC. The final model contained 24 preoperative predictors: nonambulatory surgery; American Society of Anesthesiologists physical status; international normalized ratio; redo surgery; emergency surgery or surgery outside of regular working hours; estimated surgical duration of at least 120 minutes; surgical complexity; liver disease; hypoalbuminemia; thrombocytopenia; mild, moderate, or severe anemia; and surgery type. The area under the receiver operating characteristic curve (AUC) was 0.93 (95% CI, 0.92-0.93), suggesting high predictive accuracy and generalizability. Positive predictive value (PPV) and negative predictive value (NPV) were 8.9% (95% CI, 8.7%-9.2%) and 99.7% (95% CI, 99.7%-99.7%), respectively, with increased predictive values for operations with a higher a priori risk of pRBC transfusion. The model's performance was confirmed in internal and external validation. The prediction tool outperformed the established Transfusion Risk Understanding Scoring Tool (AUC, 0.64 [0.63-0.64]; PPV, 2.6% [95% CI, 2.5%-2.6%]; NPV, 99.2% [95% CI, 99.1%-99.3%]) (P < .001) and was noninferior to 3 machine learning-derived scores.

CONCLUSIONS AND RELEVANCE

In this prognostic study of surgical patients, the Transfusion Forecast Utility for Surgical Events (TRANSFUSE) model for predicting intraoperative pRBC transfusion was developed and validated. The instrument can be used independently of machine learning infrastructure availability to inform preoperative pRBC orders and to minimize waste of nontransfused red blood cell units.

摘要

重要性

交叉配血的红细胞(pRBC)未被输注会导致这种稀缺资源的大量浪费。有效利用应成为患者血液管理策略的一部分。

目的

开发并验证一种预测模型,以识别术中需要输注pRBC的高风险手术患者。

设计、设置和参与者:这项预后研究使用了2016年1月至2021年6月来自2个四级医院网络的医院登记数据(开发阶段:纽约州布朗克斯区的蒙特菲奥里医疗中心[MMC])、2021年6月至2023年2月的数据(内部验证:MMC)以及2008年1月至2022年6月的数据(外部验证:马萨诸塞州波士顿的贝斯以色列女执事医疗中心[BIDMC])。参与者为18岁及以上接受手术的患者。

主要结局和测量指标

结局为术中输注1个或更多单位的pRBC。基于预先定义的候选预测因素,采用逐步向后回归法开发术中pRBC输注独立预测因素的计算模型。

结果

开发队列和验证队列包括816618例患者(MMC有273654例:平均[标准差]年龄57.5[17.2]岁;女性161481例[59.0%];BIDMC有542964例:平均[标准差]年龄56.0[17.1]岁;女性310272例[57.1%])。总体而言,18662例患者(2.3%)接受了至少1单位的pRBC。最终模型包含24个术前预测因素:非门诊手术;美国麻醉医师协会身体状况分级;国际标准化比值;再次手术;急诊手术或正常工作时间以外的手术;估计手术持续时间至少120分钟;手术复杂性;肝脏疾病;低白蛋白血症;血小板减少症;轻度、中度或重度贫血;以及手术类型。受试者工作特征曲线下面积(AUC)为0.93(95%CI,0.92 - 0.93),表明预测准确性和可推广性较高。阳性预测值(PPV)和阴性预测值(NPV)分别为8.9%(95%CI,8.7% - 9.2%)和99.7%(95%CI,99.7% - 99.7%),对于术前pRBC输注风险较高的手术,预测值有所增加。该模型的性能在内部和外部验证中得到证实。该预测工具优于已有的输血风险理解评分工具(AUC,0.64[0.63 - 0.64];PPV,2.6%[95%CI,2.5% - 2.6%];NPV,99.2%[95%CI,99.1% - 99.3%])(P <.001),且不劣于3个机器学习衍生评分。

结论和相关性

在这项针对手术患者的预后研究中,开发并验证了用于预测术中pRBC输注的手术事件输血预测实用工具(TRANSFUSE)模型。该工具可独立于机器学习基础设施的可用性使用,为术前pRBC医嘱提供信息,并最大限度减少未输注红细胞单位的浪费。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1f4/12006869/eac0cdd96b48/jamanetwopen-e255522-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验