Zhang Hongrui, Xia Yiming, Zhang Yangfan, Ghorpade Uma V, He Mingrui, Shin Seung Wook, Hao Xiaojing, Suryawanshi Mahesh P
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
Adv Sci (Weinh). 2025 May;12(19):e2413131. doi: 10.1002/advs.202413131. Epub 2025 Apr 17.
While lead-halide perovskites achieve high efficiencies, their toxicity and instability drive the search for safer materials. Chalcohalides, combining chalcogen and halogen anions in versatile structures, emerge as earth-abundant, nontoxic alternatives for efficient photovoltaic (PV) devices. A wide variety of chalcohalide materials, including pnictogen metals-, post-transition metals-, mixed-metals- and organic-inorganic metals-based chalcohalides, offer diverse structural, compositional, and optoelectronic characteristics. Some of these materials have already been experimentally synthesized and integrated into PV devices, achieving efficiencies of 4-6%, while others remain theoretically predicated. Despite these advancements, significant challenges must be addressed to fully realize the potential of chalcohalides as next-generation PV absorbers. This review provides a comprehensive insight of the fundamental properties of chalcohalide materials, emphasizing their unique structures, highly interesting optoelectronic and dielectric properties, to fuel further research and guide the development of high-efficiency chalcohalide solar cells. Various synthesis techniques are discussed, highlighting important and potentially overlooked strategies for fabricating complex quaternary and pentanary chalcohalide materials. Additionally, the working principles of different device structures and recent advances in fabricating efficient chalcohalide solar cells are covered. We hope that this review inspires further exciting research, innovative approaches, and breakthroughs in the field of chalcohalide materials.
虽然铅卤化物钙钛矿能实现高效率,但其毒性和不稳定性促使人们寻找更安全的材料。硫卤化物在多种结构中结合了硫族元素和卤素阴离子,成为了储量丰富、无毒且可用于高效光伏(PV)器件的替代材料。各种各样的硫卤化物材料,包括基于氮族金属、后过渡金属、混合金属以及有机-无机金属的硫卤化物,展现出多样的结构、成分和光电特性。其中一些材料已经通过实验合成并集成到光伏器件中,实现了4%-6%的效率,而其他一些材料仍停留在理论预测阶段。尽管取得了这些进展,但要充分发挥硫卤化物作为下一代光伏吸收材料的潜力,仍需应对重大挑战。本综述全面深入地探讨了硫卤化物材料的基本特性,重点强调了它们独特的结构、极具吸引力的光电和介电特性,以推动进一步的研究,并指导高效硫卤化物太阳能电池的开发。文中讨论了各种合成技术,突出了制备复杂的四元及五元硫卤化物材料的重要且可能被忽视的策略。此外,还涵盖了不同器件结构的工作原理以及高效硫卤化物太阳能电池制备方面的最新进展。我们希望这篇综述能激发硫卤化物材料领域更多令人兴奋的研究、创新方法和突破。