Kavanagh Seán R, Savory Christopher N, Scanlon David O, Walsh Aron
Department of Chemistry & Thomas Young Centre, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
Department of Materials & Thomas Young Centre, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
Mater Horiz. 2021 Oct 4;8(10):2709-2716. doi: 10.1039/d1mh00764e.
Perovskite-inspired materials aim to replicate the optoelectronic performance of lead-halide perovskites, while eliminating issues with stability and toxicity. Chalcohalides of group IV/V elements have attracted attention due to enhanced stability provided by stronger metal-chalcogen bonds, alongside compositional flexibility and ns lone pair cations - a performance-defining feature of halide perovskites. Following the experimental report of solution-grown tin-antimony sulfoiodide (SnSbSI) solar cells, with power conversion efficiencies above 4%, we assess the structural and electronic properties of this emerging photovoltaic material. We find that the reported centrosymmetric crystal structure represents an average over multiple polar 2 configurations. The instability is confirmed through a combination of lattice dynamics and molecular dynamics simulations. We predict a large spontaneous polarisation of 37 μC cm that could be active for electron-hole separation in operating solar cells. We further assess the radiative efficiency limit of this material, calculating > 30% for film thicknesses > 0.5 μm.
受钙钛矿启发的材料旨在复制卤化铅钙钛矿的光电性能,同时消除稳定性和毒性问题。IV/V族元素的硫卤化物由于更强的金属-硫族元素键提供的增强稳定性、成分灵活性以及ns孤对阳离子(卤化物钙钛矿的一个性能决定特征)而受到关注。继溶液生长的锡锑硫碘化物(SnSbSI)太阳能电池的实验报告之后,其功率转换效率超过4%,我们评估了这种新兴光伏材料的结构和电子特性。我们发现,所报道的中心对称晶体结构代表了多种极性2构型的平均值。通过晶格动力学和分子动力学模拟相结合证实了其不稳定性。我们预测其自发极化强度为37 μC/cm²,这在工作的太阳能电池中可能对电子-空穴分离起作用。我们进一步评估了这种材料的辐射效率极限,计算得出对于膜厚度大于0.5μm的情况,辐射效率极限大于30%。