Shelishiyah R, Thiyam Deepa Beeta, Margaret M Jehosheba, Banu N M Masoodhu
Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India.
Sci Rep. 2025 Jan 8;15(1):1360. doi: 10.1038/s41598-024-84883-2.
The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional Near Infra-red Spectroscopy (fNIRS). Classifying contralateral and ipsilateral motor movements is found challenging among the other mental activity signals. The current work focuses on the performance of deep learning methods like - Convolutional Neural Networks (CNN) and Bidirectional Long-Short term memory (Bi-LSTM) in classifying a four-class motor execution of Right Hand, Left Hand, Right Arm and Left Arm taken from the CORE dataset. The model performance was evaluated using metrics such as Accuracy, F1 - score, Precision, Recall, AUC and ROC curve. The CNN and Hybrid CNN models have resulted in 98.3% and 99% accuracy respectively.
混合脑机接口(BCI)已显示出性能的提升,尤其是在对多类数据进行分类方面。两个非侵入性BCI模块相结合以实现改进的分类,这两个模块分别是脑电图(EEG)和功能性近红外光谱(fNIRS)。在其他心理活动信号中,对同侧和对侧运动进行分类具有挑战性。当前的工作重点是深度学习方法的性能,如卷积神经网络(CNN)和双向长短期记忆(Bi-LSTM)在对从CORE数据集中获取的右手、左手、右臂和左臂的四类运动执行进行分类时的性能。使用诸如准确率、F1分数、精确率、召回率、AUC和ROC曲线等指标来评估模型性能。CNN模型和混合CNN模型的准确率分别达到了98.3%和99%。