Suppr超能文献

一种用于对从混合脑机接口系统获得的运动任务进行分类的混合卷积神经网络模型。

A hybrid CNN model for classification of motor tasks obtained from hybrid BCI system.

作者信息

Shelishiyah R, Thiyam Deepa Beeta, Margaret M Jehosheba, Banu N M Masoodhu

机构信息

Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Chennai, Tamil Nadu, India.

出版信息

Sci Rep. 2025 Jan 8;15(1):1360. doi: 10.1038/s41598-024-84883-2.

Abstract

The Hybrid-Brain Computer Interface (BCI) has shown improved performance, especially in classifying multi-class data. Two non-invasive BCI modules are combined to achieve an improved classification which are Electroencephalogram (EEG) and functional Near Infra-red Spectroscopy (fNIRS). Classifying contralateral and ipsilateral motor movements is found challenging among the other mental activity signals. The current work focuses on the performance of deep learning methods like - Convolutional Neural Networks (CNN) and Bidirectional Long-Short term memory (Bi-LSTM) in classifying a four-class motor execution of Right Hand, Left Hand, Right Arm and Left Arm taken from the CORE dataset. The model performance was evaluated using metrics such as Accuracy, F1 - score, Precision, Recall, AUC and ROC curve. The CNN and Hybrid CNN models have resulted in 98.3% and 99% accuracy respectively.

摘要

混合脑机接口(BCI)已显示出性能的提升,尤其是在对多类数据进行分类方面。两个非侵入性BCI模块相结合以实现改进的分类,这两个模块分别是脑电图(EEG)和功能性近红外光谱(fNIRS)。在其他心理活动信号中,对同侧和对侧运动进行分类具有挑战性。当前的工作重点是深度学习方法的性能,如卷积神经网络(CNN)和双向长短期记忆(Bi-LSTM)在对从CORE数据集中获取的右手、左手、右臂和左臂的四类运动执行进行分类时的性能。使用诸如准确率、F1分数、精确率、召回率、AUC和ROC曲线等指标来评估模型性能。CNN模型和混合CNN模型的准确率分别达到了98.3%和99%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8a/11711759/b037e3253d44/41598_2024_84883_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验