Abbas Wasim, Lee Sieun, Kim Sangil
Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu, Republic of Korea.
Innovation Center for MathScience Research & Education, Pusan National University, Busan, Republic of Korea.
PLoS Comput Biol. 2025 Apr 17;21(4):e1012996. doi: 10.1371/journal.pcbi.1012996. eCollection 2025 Apr.
In Korea, Hand-foot-and-mouth disease (HFMD) is a recurring illness that presents significant public health challenges, primarily because of its unpredictable epidemic patterns. The accurate prediction of the spread of HFMD plays a vital role in the effective management of the disease.
We have devised a dynamic model that accurately represents the transmission dynamics of HFMD. The model includes compartments for susceptible, exposed, inpatients, outpatients, recovered, and deceased individuals. By utilizing monthly inpatient and outpatient data, the ensemble Kalman filter (EnKF) method was employed to perform a joint estimation of model parameters and state variables. The calibration of model parameters involved using data from the months of January to May, while generating forecasts for the timeframe spanning from June to December.
The findings reveal a significant alignment between the model and the observed data, as evidenced by root-mean-square error (RMSE) values below 1000 for inpatients and below 10000 for outpatients starting in June. The correlation coefficients surpassed 0.9, except for the year 2015. The implications of our findings suggest a notable shift in transmission and recovery rates, starting in 2015.
The model successfully predicted the peak and magnitude of HFMD outbreaks occurring between June and December, closely matching the observed epidemic patterns. The model's efficacy in predicting epidemic trends and informing preventive strategies is reinforced by the insights gained from monthly variations in parameter estimates of HFMD transmission dynamics.
在韩国,手足口病(HFMD)是一种反复出现的疾病,带来了重大的公共卫生挑战,主要原因是其不可预测的流行模式。准确预测手足口病的传播在该疾病的有效管理中起着至关重要的作用。
我们设计了一个能准确反映手足口病传播动态的动态模型。该模型包括易感、暴露、住院、门诊、康复和死亡个体的 compartments。通过利用月度住院和门诊数据,采用集合卡尔曼滤波器(EnKF)方法对模型参数和状态变量进行联合估计。模型参数的校准使用了1月至5月的数据,同时对6月至12月的时间范围进行预测。
研究结果显示模型与观测数据之间存在显著一致性,从6月起住院患者的均方根误差(RMSE)值低于1000,门诊患者低于10000即可证明。除2015年外,相关系数超过0.9。我们的研究结果表明,从2015年开始,传播和恢复率发生了显著变化。
该模型成功预测了6月至12月期间手足口病疫情的高峰和规模,与观测到的流行模式密切匹配。手足口病传播动态参数估计的月度变化所获得的见解,增强了该模型在预测流行趋势和为预防策略提供信息方面的功效。