Wei Jing, Deng Min, Qin Zikang, Zhao Weiyi, Li Yujie, Selyanchyn Roman, Zhao Hongyong, Dong Jie, Yin Dengguo, Zhuang Yuanfa, Deng Liyuan, Yang Lin, Yao Lu, Jiang Wenju, Zheng Junfeng, Van der Bruggen Bart, Dai Zhongde
College of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China.
National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, 610065, P. R. China.
Adv Sci (Weinh). 2025 Apr 17:e2501330. doi: 10.1002/advs.202501330.
To mitigate global climate change, the development of membranes with high CO permeability and selectivity is urgently needed. Here, a simple and effective non-solvent-induced microstructure rearrangement (MSR) technique is proposed to enhance the gas separation performance of Pebax 2533 membranes. By immersing Pebax 2533 membranes in amino acid salt solutions to induce MSR, the CO permeability of the optimized Pebax 2533-GlyK 10 wt.% membrane reached 1180 Barrer, a 4.5-fold increase compared to the original membrane, without compromising CO/N selectivity. Moreover, the MSR membrane maintains stable gas separation performance for nearly 500 days, demonstrating excellent long-term stability. Furthermore, applying the MSR technique to thin-film composite (TFC) membranes revealed that both Pebax 2533/polyvinyl chloride (PVC) hollow fiber (HF) TFC membranes and Pebax 2533/polyacrylonitrile (PAN) flat-sheet TFC membranes exhibited significantly enhanced CO permeance under the treatment of DI water. Characterization results indicated that the chemical-physical properties of the membranes before and after MSR are nearly unchanged, suggesting that the non-solvent-induced MSR is a promising technique for next-generation membrane development for carbon capture.
为了缓解全球气候变化,迫切需要开发具有高CO渗透性和选择性的膜。在此,提出了一种简单有效的非溶剂诱导微结构重排(MSR)技术来提高Pebax 2533膜的气体分离性能。通过将Pebax 2533膜浸入氨基酸盐溶液中以诱导MSR,优化后的Pebax 2533-GlyK 10 wt.%膜的CO渗透率达到1180 Barrer,与原始膜相比提高了4.5倍,同时不影响CO/N选择性。此外,MSR膜在近500天内保持稳定的气体分离性能,显示出优异的长期稳定性。此外,将MSR技术应用于薄膜复合(TFC)膜表明,Pebax 2533/聚氯乙烯(PVC)中空纤维(HF)TFC膜和Pebax 2533/聚丙烯腈(PAN)平板TFC膜在去离子水(DI水)处理下均表现出显著提高的CO渗透通量。表征结果表明,MSR前后膜的化学物理性质几乎不变,这表明非溶剂诱导的MSR是一种用于下一代碳捕获膜开发的有前途的技术。