Mukherjee Subhrangsu, Liesen Nicholas T, Milner Scott T, Hall Lisa M, DeLongchamp Dean M
Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
ACS Nano. 2025 Apr 29;19(16):15638-15650. doi: 10.1021/acsnano.4c18022. Epub 2025 Apr 17.
Polymer chain stretching enables the plastic and elastic properties that make polymers unique and valuable engineering materials. Despite its importance, polymer chain orientation in amorphous regions remains very challenging to measure by conventional techniques because it is an intrinsically molecule-scale phenomenon lacking long-range order that is frequently heterogeneous across length scales of ≈ (1 to 100) nm. Polarized resonant soft X-ray scattering (P-RSoXS) is an emerging technique that has recently achieved the measurement of amorphous chain orientation with ≈2 nm spatial resolution. The advent of this measurement capability invites comparisons with computational results for which spatial variations in chain orientation are readily accessible, providing a powerful approach to computation validation. Here we forward simulate P-RSoXS patterns for polystyrene grafted gold nanoparticles from real-space representations incorporating spatial polymer backbone orientation heterogeneity directly extracted from coarse-grained modeling results. Agreement between the computation and P-RSoXS experiment is found to depend greatly on assumptions of phenyl ring conformation relative to the polymer chain backbone, because the orientation sensitivity of P-RSoXS relies on a bond-level transition dipole moment of the phenyl ring of polystyrene to report backbone orientation. By incorporating a statistical description of phenyl ring orientation based on atomistic calculations, we report excellent agreement between P-RSoXS data and forward-simulated patterns with no fitting variables.
聚合物链的拉伸赋予了聚合物独特的塑性和弹性性能,使其成为有价值的工程材料。尽管聚合物链取向很重要,但由于其本质上是一种缺乏长程有序的分子尺度现象,在≈(1至100)nm的长度尺度上通常是不均匀的,因此通过传统技术测量非晶区的聚合物链取向仍然非常具有挑战性。偏振共振软X射线散射(P-RSoXS)是一种新兴技术,最近已实现以≈2nm的空间分辨率测量非晶链取向。这种测量能力的出现引发了与计算结果的比较,通过计算结果可以很容易地获得链取向的空间变化,为计算验证提供了一种强大的方法。在这里,我们从包含直接从粗粒度建模结果中提取的空间聚合物主链取向异质性的实空间表示中,对聚苯乙烯接枝金纳米颗粒的P-RSoXS图案进行正向模拟。发现计算结果与P-RSoXS实验之间的一致性很大程度上取决于相对于聚合物链主链的苯环构象假设,因为P-RSoXS的取向敏感性依赖于聚苯乙烯苯环的键级跃迁偶极矩来报告主链取向。通过纳入基于原子计算的苯环取向统计描述,我们报告了P-RSoXS数据与无拟合变量的正向模拟图案之间的出色一致性。