Gao Hengda, Guo Xiao-Wei, Li Genglin, Li Chao, Yang Canqun
College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China.
College of Computer Science and Technology, National University of Defense Technology, Changsha, 410073, China; Laboratory of Digitizing Software for Frontier Equipment, National University of Defense Technology, Changsha, 410073, China.
Neural Netw. 2025 Aug;188:107466. doi: 10.1016/j.neunet.2025.107466. Epub 2025 Apr 12.
To predict material properties from crystal structures, we introduce a simple yet flexible Generic Crystal Pattern graph neural Network (GCPNet), which is based on crystal pattern graphs and employs the Graph Convolutional Attention Operator (GCAO) along with a two-level update mechanism to extract key structural features from crystalline materials effectively. The GCPNet model complements the missing microstructure inputs of existing networks and leverages diverse information updating mechanisms, enabling the prediction of material properties with better precision over other networks on five public datasets. Further experiments show that our model is straightforward to use and robust in real-world applications. We also highlight the good interpretability of GCPNet, using local contributions from our model to increase the search efficiency for the high-throughput perovskite screening by 32%. Taken together, our findings show that the GCPNet model offers an effective solution to facilitate the screening and discovery of ideal crystals and is an efficient alternative to existing neural networks in material property prediction.The implementation code can be found at https://github.com/feiji110/GCPNet.
为了从晶体结构预测材料属性,我们引入了一种简单而灵活的通用晶体模式图神经网络(GCPNet),它基于晶体模式图,并采用图卷积注意力算子(GCAO)以及两级更新机制,以有效地从晶体材料中提取关键结构特征。GCPNet模型补充了现有网络中缺失的微观结构输入,并利用了多样的信息更新机制,在五个公共数据集上比其他网络能更精确地预测材料属性。进一步的实验表明,我们的模型在实际应用中易于使用且稳健。我们还强调了GCPNet良好的可解释性,利用我们模型的局部贡献将高通量钙钛矿筛选的搜索效率提高了32%。综上所述,我们的研究结果表明,GCPNet模型为促进理想晶体的筛选和发现提供了一种有效的解决方案,并且在材料属性预测方面是现有神经网络的有效替代方案。实现代码可在https://github.com/feiji110/GCPNet找到。