Suppr超能文献

钌-二氧化钛催化剂上的光辅助热催化一氧化碳还原反应

Photo-assisted thermal catalytic CO reduction over Ru-TiO catalysts.

作者信息

Zhang Haodong, Chen Min, Qian Weiming, Zhang Jianghao, Chen Xueyan, Fang Jinhou, Wang Chi, Zhang Changbin

机构信息

Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

出版信息

J Environ Sci (China). 2025 Sep;155:501-509. doi: 10.1016/j.jes.2024.05.013. Epub 2024 May 17.

Abstract

Photothermal catalysis is a promising technology to convert CO into high value-added products. Here, we show that loading Ru NPs on TiO achieved a remarkable photothermal synergistic effect and the Ru-TiO demonstrated a high efficiency for the photothermal conversion of low CO concentration to CH at the gas-solid interface. The photothermal activity of the Ru-TiO (217.9 µmol/(g·h)) was nearly 6 times higher than pure thermal activity (38.08 µmol/(g·h)), and nearly 20 times than the photocatalytic activity (10.9 µmol/(g·h)). We revealed that the light excitation could drive the generated electrons from TiO to Ru particles, beneficial to CO reduction, while external heating showed no influence on the charge separation of the Ru-TiO. Hence, the photothermal synergy is not a heat-assisted photocatalytic process, but a photo-assisted thermal catalytic process. We finally demonstrated that the CO was firstly converted to CO, and the CO was further hydrogenated to CH. The introduction of light could promote the activation of intermediate CO species at the Ru-Ti interface sites, thus greatly accelerating CO hydrogenation to CH. This work contributes to further understanding of the mechanism of photothermal catalytic CO reduction.

摘要

光热催化是一种将一氧化碳转化为高附加值产品的很有前景的技术。在此,我们表明在二氧化钛上负载钌纳米颗粒实现了显著的光热协同效应,并且钌 - 二氧化钛在气 - 固界面处将低浓度一氧化碳光热转化为甲烷方面表现出高效率。钌 - 二氧化钛的光热活性(217.9微摩尔/(克·小时))几乎比纯热活性(38.08微摩尔/(克·小时))高6倍,比光催化活性(10.9微摩尔/(克·小时))高近20倍。我们发现光激发可以驱动从二氧化钛产生的电子转移到钌颗粒上,有利于一氧化碳还原,而外部加热对钌 - 二氧化钛的电荷分离没有影响。因此,光热协同作用不是热辅助光催化过程,而是光辅助热催化过程。我们最终证明一氧化碳首先转化为二氧化碳,然后二氧化碳进一步氢化为甲烷。光的引入可以促进在钌 - 二氧化钛界面位点处中间二氧化碳物种的活化,从而极大地加速二氧化碳氢化为甲烷的过程。这项工作有助于进一步理解光热催化一氧化碳还原的机理。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验