Suppr超能文献

用于自动生成脑网络的时空粗到细扩散模型。

Spatiotemporal coarse-to-fine diffusion model for automatic brain network generation.

作者信息

Zuo Qiankun, Yu Jiaojiao, Ye Conghuan, Chen Ling, Tian Hao, Wu Yixian, Zhang Yudong

机构信息

Hubei Key Laboratory of Digital Finance Innovation, Hubei University of Economics, Wuhan, Hubei, China.

School of Information Engineering, Hubei University of Economics, Wuhan, Hubei, China.

出版信息

Med Phys. 2025 Jul;52(7):e17833. doi: 10.1002/mp.17833. Epub 2025 Apr 17.

Abstract

BACKGROUND

Functional magnetic resonance imaging (fMRI) has emerged as a transformative tool in analyzing and understanding brain diseases. It is a challenge to learn effective features from the high-dimensional fMRI. Most studies have focused on extracting connectivity-based features for disease analysis. However, they heavily rely on the software toolboxes to construct connectivity-based features, which may suffer from large errors because of different manual parameter settings and thus lead to bad performance in brain disorder analysis.

PURPOSE

A novel brain denoiser model is proposed to transform four-dimensional fMRI (4D fMRI) into a brain network in a unified framework for brain disease analysis.

METHODS

By introducing anatomical knowledge, the proposed model first reduces the 4D fMRI into a 2D coarse region-of-interest(ROI)-based time series and then diffuses it into noisy status by gradually adding Gaussian noise. Moreover, the coarse-to-fine transformer refinement is designed to capture multi-scale temporal dynamics and iteratively remove unrelated multi-frequency noise. Besides, the low-frequency preservation module is devised to enhance the effective signal at low frequencies during the denoising process. This can improve the signal-to-noise ratio at each timestep, which ensures accurate restoration of ROI time series and improves the performance of brain network construction.

RESULTS

We evaluate the performance of the Brain Denoiser on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and the Autism Brain Imaging Data Exchange (ABIDE) dataset, demonstrating its ability to effectively suppress noise while preserving the underlying neural signals. Comparative analyses with related competing methods demonstrate the superiority of the proposed model.

CONCLUSIONS

Generally, the proposed model presents a robust and innovative solution for brain network generation, paving the way for efficient analysis of brain disease.

摘要

背景

功能磁共振成像(fMRI)已成为分析和理解脑部疾病的变革性工具。从高维fMRI中学习有效特征是一项挑战。大多数研究都集中在提取基于连通性的特征用于疾病分析。然而,它们严重依赖软件工具箱来构建基于连通性的特征,由于手动参数设置不同,可能会出现较大误差,从而导致脑部疾病分析性能不佳。

目的

提出一种新型脑去噪器模型,在统一框架中将四维fMRI(4D fMRI)转换为脑网络,用于脑部疾病分析。

方法

通过引入解剖学知识,所提出的模型首先将4D fMRI简化为基于二维粗略感兴趣区域(ROI)的时间序列,然后通过逐渐添加高斯噪声将其扩散到有噪声状态。此外,设计了从粗到精的变换器细化,以捕获多尺度时间动态,并迭代去除无关的多频噪声。此外,还设计了低频保留模块,以在去噪过程中增强低频有效信号。这可以提高每个时间步的信噪比,确保ROI时间序列的准确恢复,并提高脑网络构建的性能。

结果

我们在阿尔茨海默病神经影像倡议(ADNI)数据集和自闭症脑影像数据交换(ABIDE)数据集上评估了脑去噪器的性能,证明了其在保留潜在神经信号的同时有效抑制噪声的能力。与相关竞争方法的比较分析证明了所提出模型的优越性。

结论

总体而言,所提出的模型为脑网络生成提供了一种稳健且创新的解决方案,为脑部疾病的高效分析铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验