用于自动评估根管充填放射影像质量的深度学习网络。
Deep-learning network for automated evaluation of root-canal filling radiographic quality.
作者信息
Jin Liuli, Du Bingran, Xu Zineng, Bai Hailong, Ding Peng, Zhang Ze, Pan Yaopeng, Lin Yuan, Li Zhiwen, Rausch-Fan Xiaohui, Hu Fei, Zhang Xueyang
机构信息
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, Guangdong, 528308, China.
出版信息
Eur J Med Res. 2025 Apr 17;30(1):297. doi: 10.1186/s40001-025-02331-x.
BACKGROUND
Deep-learning networks are promising techniques in dentistry. This study developed and validated a deep-learning network, You Only Look Once (YOLO) v5, for the automatic evaluation of root-canal filling quality on periapical radiographs.
METHODS
YOLOv5 was developed using 1,008 periapical radiographs (training set: 806, validation set: 101, testing set: 101) from one center and validated on an external data set of 500 periapical radiographs from another center. We compared the network's performance with that of inexperienced endodontist in terms of recall, precision, F1 scores, and Kappa values, using the results from specialists as the gold standard. We also compared the evaluation durations between the manual method and the network.
RESULTS
On the external test data set, the YOLOv5 network performed better than inexperienced endodontist in terms of overall comprehensive performance. The F1 index values of the network for correct and incorrect filling were 92.05% and 82.93%, respectively. The network outperformed the inexperienced endodontist in all tooth regions, especially in the more difficult-to-assess upper molar regions. Notably, the YOLOv5 network evaluated images 150-220 times faster than manual evaluation.
CONCLUSIONS
The YOLOv5 deep learning network provided clinicians with a new, relatively accurate and efficient auxiliary tool for assessing the radiological quality of root canal fillings, enhancing work efficiency with large sample sizes. However, its use should be complemented by clinical expertise for accurate evaluations.
背景
深度学习网络是牙科领域很有前景的技术。本研究开发并验证了一种深度学习网络——你只看一次(YOLO)v5,用于自动评估根尖片上的根管充填质量。
方法
使用来自一个中心的1008张根尖片(训练集:806张,验证集:101张,测试集:101张)开发YOLOv5,并在来自另一个中心的500张根尖片的外部数据集上进行验证。我们以专家的结果作为金标准,在召回率、精确率、F1分数和kappa值方面,将该网络的性能与经验不足的牙髓病医生的性能进行比较。我们还比较了手动方法和该网络之间的评估持续时间。
结果
在外部测试数据集上,YOLOv5网络在整体综合性能方面比经验不足的牙髓病医生表现更好。该网络对正确和不正确充填的F1指数值分别为92.05%和82.93%。该网络在所有牙齿区域的表现均优于经验不足的牙髓病医生,尤其是在更难评估的上颌磨牙区域。值得注意的是,YOLOv5网络评估图像的速度比手动评估快150 - 220倍。
结论
YOLOv5深度学习网络为临床医生提供了一种新的、相对准确且高效的辅助工具,用于评估根管充填的放射学质量,在大样本量时可提高工作效率。然而,其使用应辅以临床专业知识以进行准确评估。