Deng Tao, Ji Xiao, Zhao Yang, Cao Longsheng, Li Shuang, Hwang Sooyeon, Luo Chao, Wang Pengfei, Jia Haiping, Fan Xiulin, Lu Xiaochuan, Su Dong, Sun Xueliang, Wang Chunsheng, Zhang Ji-Guang
Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA.
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
Adv Mater. 2020 Jun;32(23):e2000030. doi: 10.1002/adma.202000030. Epub 2020 May 4.
Lithium (Li) metal is a promising candidate as the anode for high-energy-density solid-state batteries. However, interface issues, including large interfacial resistance and the generation of Li dendrites, have always frustrated the attempt to commercialize solid-state Li metal batteries (SSLBs). Here, it is reported that infusing garnet-type solid electrolytes (GSEs) with the air-stable electrolyte Li PO (LPO) dramatically reduces the interfacial resistance to ≈1 Ω cm and achieves a high critical current density of 2.2 mA cm under ambient conditions due to the enhanced interfacial stability to the Li metal anode. The coated and infused LPO electrolytes not only improve the mechanical strength and Li-ion conductivity of the grain boundaries, but also form a stable Li-ion conductive but electron-insulating LPO-derived solid-electrolyte interphase between the Li metal and the GSE. Consequently, the growth of Li dendrites is eliminated and the direct reduction of the GSE by Li metal over a long cycle life is prevented. This interface engineering approach together with grain-boundary modification on GSEs represents a promising strategy to revolutionize the anode-electrolyte interface chemistry for SSLBs and provides a new design strategy for other types of solid-state batteries.
锂(Li)金属是一种很有前景的高能量密度固态电池负极材料。然而,包括大界面电阻和锂枝晶生成在内的界面问题,一直阻碍着固态锂金属电池(SSLBs)商业化的尝试。在此,有报道称,将石榴石型固体电解质(GSEs)注入空气稳定的电解质Li PO(LPO)中,可显著降低界面电阻至约1Ω·cm,并在环境条件下实现2.2 mA/cm²的高临界电流密度,这归因于对锂金属负极界面稳定性的增强。涂覆和注入LPO的电解质不仅提高了晶界的机械强度和锂离子电导率,还在锂金属和GSE之间形成了稳定的锂离子导电但电子绝缘的LPO衍生固体电解质界面相。因此,消除了锂枝晶的生长,并防止了锂金属在长循环寿命中对GSE的直接还原。这种界面工程方法以及对GSEs的晶界改性,是一种很有前景的策略,可彻底改变SSLBs的负极 - 电解质界面化学,并为其他类型的固态电池提供新的设计策略。