Suppr超能文献

用于促进高效CO转化的金属酶模拟MOF催化剂中初级催化位点和二级配位球的定制工程。

Tailored engineering of primary catalytic sites and secondary coordination spheres in metalloenzyme-mimetic MOF catalysts for boosting efficient CO conversion.

作者信息

Li Jiawei, Yang Fan, Yu Benling, Dai Zhongke, Wei Shiyuan, Wu Ying, He Liuqing, Zhou Fa, Huang Jianhan, Liu You-Nian

机构信息

College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface Science, Central South University Changsha 410083 Hunan P. R. China

GuangDong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 P. R. China.

出版信息

Chem Sci. 2025 Apr 8;16(20):8827-8835. doi: 10.1039/d5sc01004g. eCollection 2025 May 21.

Abstract

The fabrication of metalloenzyme-mimetic artificial catalyst is a promising approach to achieve maximum catalytic efficiency, but the rational integration of sophisticatedly optimized primary catalytic sites (PCS) and secondary coordination spheres (SCS) for specific transformation poses a grand challenge. Here in this work, we report the tailored engineering of Cu PCS and perfluoroalkyl SCS onto a zirconium-based framework [UiO-67-(BPY-Cu)-F ( = 3, 5, 7, 11)] [BPY = 2,2'-bipyridine-5,5'-dicarboxylate] that can be utilized in the highly efficient carboxylic cyclization reaction between propargylamines and flue gas CO. The perfluoroalkyl groups act as tunable SCS that can facilely adjust the surface electronegativity, hydrophobicity, as well as the CO affinity and water vapor-resistance by simply varying the chain length. Meanwhile, the synergy between the Cu PCS and perfluoroalkyl SCS significantly facilitated the cyclization step by stabilizing the critical transition state, leading to the fast cyclization to the oxazolidinone ring. Owing to these features, UiO-67-(BPY-Cu)-F exhibited remarkable metalloenzyme-mimetic catalytic behavior by greatly facilitating the binding of propargylamines and CO, promoting the stabilization of the critical transition state to cyclization, and boosting the releasing of oxazolidinones, which have been systematically investigated by the combination of substrate adsorption tests, Fourier transform infrared spectra, grand canonical Monte Carlo simulations, density functional theory calculations, Consequently, UiO-67-(BPY-Cu)-F showed outstanding catalytic performance in the carboxylic cyclization of propargylamines and flue gas CO under ambient conditions, exhibiting 64 times higher turnover frequency (TOF) than that of homogeneous or other MOF catalysts, and exhibiting the highest TOF under similar conditions. The present work not only provides an alternative strategy for the construction of advanced carboxylic cyclization systems, but also paves a new direction in the development of CO conversion with exceptional activity through the tailored engineering of PCS and SCS in metalloenzyme-mimetic artificial catalysts.

摘要

制备金属酶模拟人工催化剂是实现最大催化效率的一种很有前景的方法,但是将经过精细优化的初级催化位点(PCS)和二级配位球(SCS)合理整合以实现特定转化是一项巨大挑战。在本工作中,我们报道了将铜PCS和全氟烷基SCS定制工程到锆基框架[UiO-67-(BPY-Cu)-F ( = 3, 5, 7, 11)][BPY = 2,2'-联吡啶-5,5'-二羧酸]上,该框架可用于炔丙胺与烟道气CO之间的高效羧酸环化反应。全氟烷基作为可调谐的SCS,通过简单改变链长就可以轻松调节表面电负性、疏水性以及CO亲和力和抗水蒸气性。同时,铜PCS和全氟烷基SCS之间的协同作用通过稳定关键过渡态显著促进了环化步骤,导致快速环化生成恶唑烷酮环。由于这些特性,UiO-67-(BPY-Cu)-F通过极大促进炔丙胺与CO的结合、促进关键过渡态向环化的稳定以及促进恶唑烷酮的释放,表现出显著的金属酶模拟催化行为,这已通过底物吸附测试、傅里叶变换红外光谱、巨正则蒙特卡罗模拟、密度泛函理论计算等方法进行了系统研究。因此,UiO-67-(BPY-Cu)-F在环境条件下的炔丙胺与烟道气CO的羧酸环化反应中表现出出色的催化性能,其周转频率(TOF)比均相或其他MOF催化剂高64倍,并且在类似条件下表现出最高的TOF。本工作不仅为构建先进的羧酸环化系统提供了一种替代策略,而且通过在金属酶模拟人工催化剂中对PCS和SCS进行定制工程,为开发具有卓越活性的CO转化开辟了新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2574/12093508/379184919ded/d5sc01004g-s1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验