Tu Shuai, Wang Junjie, Yang Pengming, He Yan, Gong Zhixing, Zhong Weihong
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
Synth Syst Biotechnol. 2025 Mar 20;10(3):707-718. doi: 10.1016/j.synbio.2025.03.004. eCollection 2025 Sep.
Chlorogenic acid (CGA) is a valuable phenolic acid with various pharmaceutical functions. In our previous study, synthesis of CGA in was achieved. However, its yield required improvement before large scale production. In this study, systematic metabolic engineering strategy was used to reconstruct chassis cell . YC0707 to enhance its CGA yield from glucose. To balance the supply of phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P), (encoding glucose-6-phosphate dehydrogenase) and (encoding 6-phosphogluconate dehydrogenase) were overexpressed by strong promoter swapping, thereby strengthening the pentose phosphate pathway. The mutant of phosphofructokinase ( ) was further introduced to weaken the glycolytic pathway. Then, the -coumaric acid synthesis capacity was enhanced by employing tyrosine ammonia lyase from (RgTAL), ΔHAM1, and ΔYJL028W. Fusion expression of AtC4H (cinnamate-4-hydroxylase) and At4CL1 (4-coumarate CoA ligase 1), together with CsHQT (hydroxycinnamoyl CoA quinate transferase) and AtC3'H (-coumaroyl shikimate 3-hydroxylase), improved biosynthetic flux to CGA. Subsequently, the microenvironment of P450 enzymes was improved by overexpressing (a transcription factor for lipid biosynthesis) and removal of heme oxygenase gene . Furthermore, screening potential transporters to facilitate CGA accumulation. Finally, we optimized the fermentation conditions. Using these strategies, CGA titers increased from 234.8 mg/L to 837.2 mg/L in shake flasks and reached 1.62 g/L in a 5-L bioreactor, representing the highest report in and providing new insights for CGA production.
绿原酸(CGA)是一种具有多种药用功能的重要酚酸。在我们之前的研究中,已实现了在[具体生物]中合成CGA。然而,在大规模生产之前,其产量仍需提高。在本研究中,采用系统的代谢工程策略对底盘细胞[具体细胞名称] YC0707进行改造,以提高其从葡萄糖生产CGA的产量。为了平衡磷酸烯醇式丙酮酸(PEP)和赤藓糖-4-磷酸(E4P)的供应,通过强启动子交换过表达[具体基因1](编码葡萄糖-6-磷酸脱氢酶)和[具体基因2](编码6-磷酸葡萄糖酸脱氢酶),从而强化磷酸戊糖途径。进一步引入磷酸果糖激酶([具体基因3])的突变体以削弱糖酵解途径。然后,通过使用来自[具体生物]的酪氨酸解氨酶(RgTAL)、ΔHAM1和ΔYJL028W增强对香豆酸合成能力。AtC4H(肉桂酸-4-羟化酶)和At4CL1(4-香豆酸CoA连接酶1)的融合表达,以及CsHQT(羟基肉桂酰CoA奎尼酸转移酶)和AtC3'H(对香豆酰莽草酸3-羟化酶),改善了CGA的生物合成通量。随后,通过过表达[具体基因4](脂质生物合成的转录因子)和去除血红素加氧酶基因[具体基因5]改善P450酶的微环境。此外,筛选促进CGA积累的潜在转运蛋白。最后,我们优化了发酵条件。使用这些策略,摇瓶中CGA滴度从234.8 mg/L提高到837.2 mg/L,并在5-L生物反应器中达到1.62 g/L,这是[具体范围]中报道的最高水平,为CGA生产提供了新的见解。