Suppr超能文献

两种新的黄酮4'-甲基转移酶的鉴定及其在大肠杆菌中()-橙皮素生物合成中的应用。

Identification of two new flavone 4'--methyltransferases and their application in biosynthesis of ()-hesperetin in .

作者信息

Wang Yiyun, Huang Ruiqiu, Gao Song, Yue Mingyu, Zhang Xuan, Zeng Weizhu, Tang Bin, Zhou Jingwen, Huang Dongliang, Xu Sha

机构信息

Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.

Shenzhen Tianjiao Medical Technology Co., Ltd, GuangDong, Shenzhen, 518029, China.

出版信息

Synth Syst Biotechnol. 2025 Mar 20;10(3):728-736. doi: 10.1016/j.synbio.2025.03.003. eCollection 2025 Sep.

Abstract

Methyltransferases are pivotal enzymes in the biosynthesis of methylated flavonoids, including (2)-hesperetin. However, existing flavonoid 4'--methyltransferase (F4'OMT) enzymes typically exhibit low substrate specificity and catalytic efficiency, which hinders microbial synthesis. To overcome this limitation, this study screened and identified two novel F4'OMTs, OMT-2 and OMT-3, from Chinese citrus varieties 'Chachiensis' (CZG) and Tomentosa (HZY). These enzymes displayed high substrate specificity for (2)-eriodictyol. A strain capable of synthesis of (2)-hesperetin was developed by integrating the novel F4'OMTs and other biosynthetic pathway genes at high copy numbers into . The engineered strain achieved a remarkable production titre of (2)-hesperetin (130.2 mg/L), surpassing the yields of previously reported F4'OMTs. Furthermore, availability of the cofactor S-adenosylmethionine (SAM) was optimised to enhance methyltransferase catalytic efficiency, enabling the engineered strain to produce 178.2 mg/L of (2)-hesperetin during fed-batch fermentation with SAM supplementation, the highest yield reported to date. This study represents the first successful biosynthesis of (2)-hesperetin in , providing valuable insights into the synthesis of other O-methylated flavonoids.

摘要

甲基转移酶是甲基化类黄酮生物合成中的关键酶,包括(2)-橙皮素。然而,现有的类黄酮4'-O-甲基转移酶(F4'OMT)通常表现出较低的底物特异性和催化效率,这阻碍了微生物合成。为克服这一限制,本研究从中国柑橘品种“茶枝柑”(CZG)和“黄橘”(HZY)中筛选并鉴定出两种新型F4'OMT,即OMT-2和OMT-3。这些酶对(2)-圣草酚表现出高底物特异性。通过将新型F4'OMT和其他生物合成途径基因以高拷贝数整合到[具体宿主]中,构建了一种能够合成(2)-橙皮素的菌株。该工程菌株实现了(2)-橙皮素的显著生产滴度(130.2mg/L),超过了先前报道的F4'OMT的产量。此外,对辅因子S-腺苷甲硫氨酸(SAM)的可用性进行了优化,以提高甲基转移酶的催化效率,使工程菌株在补加SAM的分批补料发酵过程中能够产生178.2mg/L的(2)-橙皮素,这是迄今为止报道的最高产量。本研究代表了首次在[具体宿主]中成功生物合成(2)-橙皮素,为其他O-甲基化类黄酮的合成提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验