Suppr超能文献

MolSnapper:基于结构的药物设计中的条件扩散

MolSnapper: Conditioning Diffusion for Structure-Based Drug Design.

作者信息

Ziv Yael, Imrie Fergus, Marsden Brian, Deane Charlotte M

机构信息

Department of Statistics, University of Oxford, St Giles, Oxford OX1 3LB, U.K.

Nuffield Department of Medicine, University of Oxford, Old Road, Oxford OX3 7BN, U.K.

出版信息

J Chem Inf Model. 2025 May 12;65(9):4263-4273. doi: 10.1021/acs.jcim.4c02008. Epub 2025 Apr 18.

Abstract

Generative models have emerged as potentially powerful methods for molecular design, yet challenges persist in generating molecules that effectively bind to the intended target. The ability to control the design process and incorporate prior knowledge would be highly beneficial for better tailoring molecules to fit specific binding sites. In this paper, we introduce MolSnapper, a novel tool that is able to condition diffusion models for structure-based drug design by seamlessly integrating expert knowledge in the form of 3D pharmacophores. We demonstrate through comprehensive testing on both the CrossDocked and Binding MOAD data sets that our method generates molecules better tailored to fit a given binding site, achieving high structural and chemical similarity to the original molecules. Additionally, MolSnapper yields approximately twice as many valid molecules as alternative methods.

摘要

生成模型已成为分子设计中潜在的强大方法,但在生成能有效结合预期靶点的分子方面,挑战依然存在。控制设计过程并纳入先验知识的能力,对于更好地定制分子以适配特定结合位点将非常有益。在本文中,我们介绍了MolSnapper,这是一种新颖的工具,它能够通过无缝整合三维药效团形式的专家知识,为基于结构的药物设计调整扩散模型。我们通过对CrossDocked和Binding MOAD数据集进行全面测试证明,我们的方法生成的分子能更好地适配给定的结合位点,与原始分子具有高度的结构和化学相似性。此外,MolSnapper生成的有效分子数量大约是其他方法的两倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31a7/12076506/778895721cf7/ci4c02008_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验