Suppr超能文献

引导式多目标生成式人工智能增强基于结构的药物设计。

Guided multi-objective generative AI to enhance structure-based drug design.

作者信息

Kadan Amit, Ryczko Kevin, Lloyd Erika, Roitberg Adrian, Yamazaki Takeshi

机构信息

SandboxAQ Palo Alto CA USA

Department of Chemistry, University of Florida PO Box 117200 Gainesville Florida 32611-7200 USA.

出版信息

Chem Sci. 2025 May 29. doi: 10.1039/d5sc01778e.

Abstract

Generative AI has the potential to revolutionize drug discovery. Yet, despite recent advances in deep learning, existing models cannot generate molecules that satisfy all desired physicochemical properties. Herein, we describe IDOLpro, a novel generative chemistry AI combining diffusion with multi-objective optimization for structure-based drug design. Differentiable scoring functions guide the latent variables of the diffusion model to explore uncharted chemical space and generate novel ligands , optimizing a plurality of target physicochemical properties. We demonstrate our platform's effectiveness by generating ligands with optimized binding affinity and synthetic accessibility on two benchmark sets. IDOLpro produces ligands with binding affinities over 10-20% higher than the next best state-of-the-art method on each test set, producing more drug-like molecules with generally better synthetic accessibility scores than other methods. We do a head-to-head comparison of IDOLpro against an exhaustive virtual screen of a large database of drug-like molecules. We show that IDOLpro can generate molecules for a range of important disease-related targets with better binding affinity and synthetic accessibility than any molecule found in the virtual screen while being over 100× faster and less expensive to run. On a test set of experimental complexes, IDOLpro is the first to produce molecules with better binding affinities than the experimentally observed ligands. IDOLpro can accommodate other scoring functions ( ADME-Tox) to accelerate hit-finding, hit-to-lead, and lead optimization for drug discovery.

摘要

生成式人工智能有潜力彻底改变药物发现。然而,尽管深度学习最近取得了进展,但现有模型无法生成满足所有所需物理化学性质的分子。在此,我们描述了IDOLpro,一种新颖的生成化学人工智能,它将扩散与多目标优化相结合用于基于结构的药物设计。可微评分函数指导扩散模型的潜在变量探索未知的化学空间并生成新型配体,同时优化多个目标物理化学性质。我们通过在两个基准集上生成具有优化结合亲和力和合成可及性的配体来证明我们平台的有效性。IDOLpro生成的配体在每个测试集上的结合亲和力比次优的现有最佳方法高出10%-20%,并且比其他方法生成更多具有总体更好合成可及性分数的类药物分子。我们将IDOLpro与一个大型类药物分子数据库的详尽虚拟筛选进行了直接比较。我们表明,IDOLpro能够为一系列重要的疾病相关靶点生成分子,其结合亲和力和合成可及性比虚拟筛选中发现的任何分子都更好,同时运行速度快100多倍且成本更低。在一组实验复合物测试集上,IDOLpro率先生成了结合亲和力优于实验观察到的配体的分子。IDOLpro可以容纳其他评分函数(ADME-Tox)以加速药物发现中的苗头化合物发现、苗头化合物到先导化合物以及先导化合物优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12c4/12127851/89d3e4bfc4e3/d5sc01778e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验