Suppr超能文献

使用机器学习预测颈动脉支架置入后的结果。

Predicting Outcomes Following Carotid Artery Stenting Using Machine Learning.

作者信息

Li Ben, Aljabri Badr, Beaton Derek, Hussain Mohamad A, Lee Douglas S, Wijeysundera Duminda N, Rotstein Ori D, de Mestral Charles, Mamdani Muhammad, Roche-Nagle Graham, Al-Omran Mohammed

机构信息

Department of Surgery, University of Toronto, Toronto, ON, Canada.

Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, ON, Canada.

出版信息

J Endovasc Ther. 2025 Apr 18:15266028251333670. doi: 10.1177/15266028251333670.

Abstract

BACKGROUND

Carotid artery stenting (CAS) carries important perioperative risks. Outcome prediction tools may help guide clinical decision-making but remain limited. We developed machine learning (ML) algorithms that predict 30-day outcomes following transfemoral CAS.

METHODS

The National Surgical Quality Improvement Program (NSQIP) targeted vascular database was used to identify patients who underwent transfemoral CAS between 2011 and 2021. Input features included 36 preoperative demographic/clinical variables. The primary outcome was a 30-day major adverse cardiovascular event (MACE; composite of stroke, myocardial infarction [MI], or death). The secondary outcomes were 30-day stroke, MI, death, carotid-related morbidity, other morbidity, non-home discharge, and unplanned readmission. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features with logistic regression as the baseline comparator. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Model robustness was evaluated with calibration plot and Brier score. Variable importance scores were calculated to determine the top 10 predictive features. Performance was assessed on subgroups based on age, sex, race, ethnicity, symptom status, stent type, and urgency.

RESULTS

Overall, 2093 patients underwent CAS during the study period. Thirty-day MACE occurred in 130 (6.2%) patients. The best-performing prediction model for 30-day MACE was XGBoost, achieving an AUROC (95% CI) of 0.93 (0.92-0.94). In comparison, logistic regression had an AUROC (95% CI) of 0.67 (0.65-0.68), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. For secondary outcomes, XGBoost achieved AUROCs between 0.86 and 0.97. The calibration plot showed good agreement between predicted and observed event probabilities with a Brier score of 0.02. The top three predictive features in our algorithm were (1) symptomatic carotid stenosis, (2) age, and (3) American Society of Anesthesiologists classification. Model performance remained robust on all subgroup analyses of specific demographic and clinical populations.

CONCLUSIONS

Our ML models accurately predict 30-day outcomes following transfemoral CAS using preoperative data. They have the potential for important utility in guiding risk-mitigation strategies for patients being considered for CAS to improve outcomes.Clinical ImpactTransfemoral carotid artery stenting (CAS) carries important perioperative risks. Outcome prediction tools may help guide clinical decision-making but remain limited. Using data from the National Surgical Quality Improvement Program (NSQIP) targeted vascular database, we developed machine learning (ML) models that accurately predict 30-day outcomes following transfemoral CAS using preoperative data, outperforming logistic regression and existing tools in the literature. The models were well-calibrated and remained robust across demographic and clinical subpopulations. These ML algorithms have the potential for important utility in guiding risk-mitigation strategies for patients being considered for transfemoral CAS to improve outcomes.

摘要

背景

颈动脉支架置入术(CAS)具有重要的围手术期风险。结果预测工具可能有助于指导临床决策,但仍有局限性。我们开发了机器学习(ML)算法来预测经股动脉CAS术后30天的结果。

方法

使用国家外科质量改进计划(NSQIP)的目标血管数据库来识别2011年至2021年间接受经股动脉CAS的患者。输入特征包括36个术前人口统计学/临床变量。主要结局是30天主要不良心血管事件(MACE;中风、心肌梗死[MI]或死亡的复合事件)。次要结局包括30天中风、MI、死亡、颈动脉相关发病率、其他发病率、非回家出院和计划外再入院。我们的数据被分为训练集(70%)和测试集(30%)。使用10折交叉验证,我们使用术前特征训练了六个ML模型,并将逻辑回归作为基线比较器。主要模型评估指标是受试者操作特征曲线下面积(AUROC)。使用校准图和Brier评分评估模型的稳健性。计算变量重要性得分以确定前10个预测特征。根据年龄、性别、种族、民族、症状状态、支架类型和紧急程度在亚组中评估性能。

结果

总体而言,在研究期间有2093例患者接受了CAS。130例(6.2%)患者发生了30天MACE。30天MACE的最佳预测模型是XGBoost,其AUROC(95%CI)为0.93(0.92 - 0.94)。相比之下,逻辑回归的AUROC(95%CI)为0.67(0.65 - 0.68),文献中的现有工具显示AUROC范围为0.58至0.74。对于次要结局,XGBoost的AUROC在0.86至0.97之间。校准图显示预测和观察到的事件概率之间具有良好的一致性,Brier评分为0.02。我们算法中的前三个预测特征是(1)有症状的颈动脉狭窄,(2)年龄,以及(3)美国麻醉医师协会分类。在特定人口统计学和临床人群的所有亚组分析中,模型性能保持稳健。

结论

我们的ML模型使用术前数据准确预测经股动脉CAS术后30天的结果。它们在指导考虑进行CAS的患者的风险缓解策略以改善结局方面具有重要的实用潜力。临床影响经股动脉颈动脉支架置入术(CAS)具有重要的围手术期风险。结果预测工具可能有助于指导临床决策,但仍有局限性。使用国家外科质量改进计划(NSQIP)的目标血管数据库中的数据,我们开发了机器学习(ML)模型,该模型使用术前数据准确预测经股动脉CAS术后30天的结果,优于逻辑回归和文献中的现有工具。这些模型校准良好,在不同人口统计学和临床亚组中保持稳健。这些ML算法在指导考虑进行经股动脉CAS的患者的风险缓解策略以改善结局方面具有重要的实用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验