Suppr超能文献

使用机器学习预测颈动脉内膜切除术的结果。

Using machine learning to predict outcomes following carotid endarterectomy.

机构信息

Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON, Canada.

Data Science and Advanced Analytics Department, Unity Health Toronto, University of Toronto, Toronto, ON, Canada.

出版信息

J Vasc Surg. 2023 Oct;78(4):973-987.e6. doi: 10.1016/j.jvs.2023.05.024. Epub 2023 May 20.

Abstract

OBJECTIVE

Prediction of outcomes following carotid endarterectomy (CEA) remains challenging, with a lack of standardized tools to guide perioperative management. We used machine learning (ML) to develop automated algorithms that predict outcomes following CEA.

METHODS

The Vascular Quality Initiative (VQI) database was used to identify patients who underwent CEA between 2003 and 2022. We identified 71 potential predictor variables (features) from the index hospitalization (43 preoperative [demographic/clinical], 21 intraoperative [procedural], and 7 postoperative [in-hospital complications]). The primary outcome was stroke or death at 1 year following CEA. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). After selecting the best performing algorithm, additional models were built using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, insurance status, symptom status, and urgency of surgery.

RESULTS

Overall, 166,369 patients underwent CEA during the study period. In total, 7749 patients (4.7%) had the primary outcome of stroke or death at 1 year. Patients with an outcome were older with more comorbidities, had poorer functional status, and demonstrated higher risk anatomic features. They were also more likely to undergo intraoperative surgical re-exploration and have in-hospital complications. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.90 (95% confidence interval [CI], 0.89-0.91). In comparison, logistic regression had an AUROC of 0.65 (95% CI, 0.63-0.67), and existing tools in the literature demonstrate AUROCs ranging from 0.58 to 0.74. Our XGBoost models maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.90 (95% CI, 0.89-0.91) and 0.94 (95% CI, 0.93-0.95), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.15 (preoperative), 0.14 (intraoperative), and 0.11 (postoperative). Of the top 10 predictors, eight were preoperative features, including comorbidities, functional status, and previous procedures. Model performance remained robust on all subgroup analyses.

CONCLUSIONS

We developed ML models that accurately predict outcomes following CEA. Our algorithms perform better than logistic regression and existing tools, and therefore, have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes.

摘要

目的

颈动脉内膜切除术(CEA)后结果的预测仍然具有挑战性,缺乏标准化的工具来指导围手术期管理。我们使用机器学习(ML)来开发自动算法,以预测 CEA 后的结果。

方法

使用血管质量倡议(VQI)数据库确定 2003 年至 2022 年间接受 CEA 的患者。我们从指数住院期间(43 个术前[人口统计学/临床]、21 个术中[手术]和 7 个术后[院内并发症])确定了 71 个潜在的预测变量(特征)。主要结局是 CEA 后 1 年内的中风或死亡。我们的数据分为训练集(70%)和测试集(30%)。使用 10 倍交叉验证,我们使用术前特征(极端梯度增强[XGBoost]、随机森林、朴素贝叶斯分类器、支持向量机、人工神经网络和逻辑回归)训练了 6 个 ML 模型。主要模型评估指标是接受者操作特征曲线下的面积(AUROC)。在选择最佳表现算法后,使用术中数据和术后数据构建了其他模型。使用校准图和 Brier 评分评估模型的稳健性。根据年龄、性别、种族、民族、保险状况、症状状况和手术紧迫性评估亚组的表现。

结果

研究期间,共有 166369 名患者接受了 CEA。总的来说,7749 名患者(4.7%)在 1 年内出现中风或死亡的主要结局。有结局的患者年龄较大,合并症较多,功能状态较差,表现出更高的风险解剖特征。他们也更有可能接受术中手术再次探查,并出现院内并发症。我们在术前阶段表现最佳的预测模型是 XGBoost,AUROC 为 0.90(95%置信区间[CI],0.89-0.91)。相比之下,逻辑回归的 AUROC 为 0.65(95% CI,0.63-0.67),而文献中的现有工具的 AUROC 范围为 0.58 至 0.74。我们的 XGBoost 模型在术中阶段和术后阶段都保持了出色的性能,AUROC 分别为 0.90(95% CI,0.89-0.91)和 0.94(95% CI,0.93-0.95)。校准图显示,预测和观察到的事件概率之间具有良好的一致性,Brier 分数分别为 0.15(术前)、0.14(术中)和 0.11(术后)。在排名前 10 的预测因素中,有 8 个是术前特征,包括合并症、功能状态和以前的手术。在所有亚组分析中,模型性能仍然稳健。

结论

我们开发了能够准确预测 CEA 后结果的 ML 模型。我们的算法优于逻辑回归和现有工具,因此在指导围手术期风险缓解策略以预防不良结果方面具有潜在的重要应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验