Suppr超能文献

一种导致脊髓小脑共济失调的钾通道突变的激活促进了含RhoGEF结构域的蛋白质Plekhg4的聚集。

Activation of a Potassium Channel Mutation That Causes Spinocerebellar Ataxia Promotes Aggregation of the RhoGEF Domain-Containing Protein Plekhg4.

作者信息

Zhang Yalan, Andrawis Anna Simone, Kaczmarek Leonard K

机构信息

Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.

Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

FASEB J. 2025 Apr 30;39(8):e70552. doi: 10.1096/fj.202402809RR.

Abstract

Kv3.3 potassium channels are highly expressed in cerebellar Purkinje neurons and contribute to the ability of these neurons to fire at high rates. In addition to their role in regulating excitability, Kv3.3 channels form a complex with several cytoplasmic proteins, including Hax-1, Arp2/3, Rac1, and TBK1. This stimulates the nucleation of actin filaments under the plasma membrane. Using biochemical and confocal laser scanning microscopy techniques, we have found that the Kv3.3 channel binds and colocalizes with Plekhg4, a guanine nucleotide exchange factor (GEF) that regulates Rac1 activity, in Purkinje neurons and in Kv3.3-expressing auditory brainstem neurons. In addition to binding Kv3.3, Plekhg4 immunoreactivity is distributed uniformly in the cytoplasm of these cells, as well as in CHO cells expressing wild-type Kv3.3. The Kv3.3-G592R mutation differs from wild-type channels in that it fails to trigger actin nucleation, constitutively activates Tank-Binding Kinase-1 (TBK1), and, in humans, leads to spinocerebellar ataxia. We find that Plekhg4 forms cytoplasmic aggregates in the cells expressing Kv3.3-G592R, and that the formation of these aggregates is further enhanced by depolarization of the plasma membrane. Pharmacological inhibition of TBK1 reduces the number of Plekhg4 aggregates in Kv3.3-G592R-expressing cells. These results suggest that Purkinje cell activity, mediated by Kv3.3 channels, may regulate Pelkhg4 aggregation and provide a potential new therapeutic approach for the treatment of spinocerebellar ataxias.

摘要

Kv3.3钾通道在小脑浦肯野神经元中高度表达,并有助于这些神经元以高速率放电。除了在调节兴奋性方面的作用外,Kv3.3通道还与几种细胞质蛋白形成复合物,包括Hax-1、Arp2/3、Rac1和TBK1。这刺激了质膜下肌动蛋白丝的成核。利用生化和共聚焦激光扫描显微镜技术,我们发现在浦肯野神经元和表达Kv3.3的听觉脑干神经元中,Kv3.3通道与Plekhg4结合并共定位,Plekhg4是一种调节Rac1活性的鸟嘌呤核苷酸交换因子(GEF)。除了与Kv3.3结合外,Plekhg4免疫反应性在这些细胞的细胞质中均匀分布,在表达野生型Kv3.3的CHO细胞中也是如此。Kv3.3-G592R突变与野生型通道的不同之处在于,它不能触发肌动蛋白成核,组成性激活Tank结合激酶-1(TBK1),并且在人类中会导致脊髓小脑共济失调。我们发现Plekhg4在表达Kv3.3-G592R的细胞中形成细胞质聚集体,并且质膜去极化进一步增强了这些聚集体的形成。对TBK1的药理学抑制减少了表达Kv3.3-G592R的细胞中Plekhg4聚集体的数量。这些结果表明,由Kv3.3通道介导的浦肯野细胞活动可能调节Plekhg4聚集,并为脊髓小脑共济失调的治疗提供一种潜在的新治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验