文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases.

作者信息

Yang Jingjing, des Rieux Anne, Malfanti Alessio

机构信息

UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium.

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy.

出版信息

ACS Nano. 2025 Apr 29;19(16):15189-15219. doi: 10.1021/acsnano.5c00700. Epub 2025 Apr 18.


DOI:10.1021/acsnano.5c00700
PMID:40249331
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12045021/
Abstract

Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/f588161932d1/nn5c00700_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/e5c267a4c39c/nn5c00700_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/5760000c22c9/nn5c00700_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/a0d9dc1728c1/nn5c00700_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/da4e61a36162/nn5c00700_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/e3d31f012195/nn5c00700_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/60a7b913c00c/nn5c00700_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/f0a415f6aa3e/nn5c00700_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/d48e99f6d881/nn5c00700_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/915d7b1a2c90/nn5c00700_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/201e02ccba8f/nn5c00700_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/c2a41975d572/nn5c00700_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/9a87cac14063/nn5c00700_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/f588161932d1/nn5c00700_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/e5c267a4c39c/nn5c00700_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/5760000c22c9/nn5c00700_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/a0d9dc1728c1/nn5c00700_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/da4e61a36162/nn5c00700_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/e3d31f012195/nn5c00700_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/60a7b913c00c/nn5c00700_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/f0a415f6aa3e/nn5c00700_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/d48e99f6d881/nn5c00700_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/915d7b1a2c90/nn5c00700_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/201e02ccba8f/nn5c00700_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/c2a41975d572/nn5c00700_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/9a87cac14063/nn5c00700_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e944/12045021/f588161932d1/nn5c00700_0013.jpg

相似文献

[1]
Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases.

ACS Nano. 2025-4-29

[2]
Stimulus-responsive drug delivery nanoplatforms for inflammatory bowel disease therapy.

Acta Biomater. 2024-10-15

[3]
Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics.

Theranostics. 2020

[4]
Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy.

Biomaterials. 2022-12

[5]
Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.

Biomaterials. 2013-2-14

[6]
Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.

Int J Pharm. 2016-12-30

[7]
Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance.

Theranostics. 2018-1-1

[8]
The Smart Dual-Stimuli Responsive Nanoparticles for Controlled Anti-Tumor Drug Release and Cancer Therapy.

Anticancer Agents Med Chem. 2021

[9]
Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment.

Int J Mol Sci. 2020-9-2

[10]
Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook.

Int J Nanomedicine. 2016-12-20

引用本文的文献

[1]
Stimuli-responsive Hydrogels for Targeted Antibiotic Delivery in Bone Tissue Engineering.

AAPS PharmSciTech. 2025-8-20

[2]
Recent advances in the therapeutics and modes of action of a range of agents used to treat ulcerative colitis and related inflammatory conditions.

Inflammopharmacology. 2025-8-15

[3]
Inflammation-modulating polymeric nanoparticles: design strategies, mechanisms, and therapeutic applications.

EBioMedicine. 2025-7-3

本文引用的文献

[1]
The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases.

Biomark Res. 2024-12-31

[2]
NIR-responsive injectable nanocomposite hydrogels with enhanced angiogenesis for promoting full-thickness wound healing.

Int J Biol Macromol. 2025-2

[3]
Preparation of a minocycline polymer micelle thermosensitive gel and its application in spinal cord injury.

Nanoscale Adv. 2024-9-16

[4]
Design and evaluation of magnetic-targeted bilosomal gel for rheumatoid arthritis: flurbiprofen delivery using superparamagnetic iron oxide nanoparticles.

Front Pharmacol. 2024-8-23

[5]
Biomineralized MnO Nanoparticle-Constituted Hydrogels Promote Spinal Cord Injury Repair by Modulating Redox Microenvironment and Inhibiting Ferroptosis.

Pharmaceutics. 2024-8-12

[6]
BiSe/PAAS Hydrogels with Photothermal and Antioxidant Properties for Bacterial Infection Wound Therapy by Improving Vascular Function and Regulating Glycolipid Metabolism.

Adv Healthc Mater. 2025-3

[7]
Plant-derived exosomes extracted from L. loaded with isoliquiritigenin to promote spinal cord injury repair based on 3D printed bionic scaffold.

Bioeng Transl Med. 2024-1-30

[8]
Acid Neutralization by Composite Lysine Nanoparticles for Spinal Cord Injury Recovery through Mitigating Mitochondrial Dysfunction.

ACS Biomater Sci Eng. 2024-7-8

[9]
Multifunctional Hierarchical Nanoplatform with Anisotropic Bimodal Mesopores for Effective Neural Circuit Reconstruction after Spinal Cord Injury.

ACS Nano. 2024-5-21

[10]
Enzyme-responsive liposomes for controlled drug release.

Drug Discov Today. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索