Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
ACS Nano. 2024 May 21;18(20):13333-13345. doi: 10.1021/acsnano.4c03252. Epub 2024 May 8.
A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO, the resulting mSiO&PMO-CeO-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.
持续的炎症反应、轴突再生能力的内在限制以及广泛存在的轴突外在抑制剂,阻碍了脊髓损伤(SCI)后运动功能的恢复。迫切需要一种多功能的治疗平台来解决 SCI 的多种临床表现。在此,我们提出了一种具有各向异性双模态介孔的多功能纳米平台,用于 SCI 后的有效神经回路重建。分层纳米平台的各向异性 Janus 结构特征由亲水介孔二氧化硅(mSiO)和疏水周期性介孔有机硅(PMO)的双隔室组成,分别具有 12nm 和 3nm 的独特孔径。与具有相互交织的双介孔的传统分层介孔纳米材料不同,这种 Janus 纳米平台中的两组介孔在空间上是独立的,并且具有完全不同的化学性质。Janus 介孔有利于具有不同性质的两种药物的可控共递:亲水性大分子依诺肝素(ENO)和疏水性小分子紫杉醇(PTX)。用 CeO 锚定,所得的 mSiO&PMO-CeO-PTX&ENO 纳米制剂不仅有效缓解了 ROS 诱导的神经元凋亡,还增强了微管稳定性,以促进内在轴突再生,并通过减少细胞外软骨素硫酸盐蛋白聚糖的抑制作用促进轴突延伸。我们相信,这种功能性双介孔纳米平台在治疗严重的多方面疾病的联合治疗中具有重要的应用潜力。
Angew Chem Int Ed Engl. 2014-4-24
Neural Regen Res. 2025-12-1