Haque Rezaul, Khan Mahbub Alam, Rahman Hamdadur, Khan Shakil, Siddiqui Md Ismail Hossain, Limon Zishad Hossain, Swapno S M Masfequier Rahman, Appaji Abhishek
Department of Computer Science and Engineering, East West University, A, 2 Jahurul Islam Ave, Dhaka, 1212, Bangladesh.
Department of Management Information System, Pacific State University, 3424 Wilshire Blvd., 12th Floor Los Angeles, CA, 90010, USA.
Comput Biol Med. 2025 Jun;191:110166. doi: 10.1016/j.compbiomed.2025.110166. Epub 2025 Apr 17.
Early detection of brain tumors in MRI images is vital for improving treatment results. However, deep learning models face challenges like limited dataset diversity, class imbalance, and insufficient interpretability. Most studies rely on small, single-source datasets and do not combine different feature extraction techniques for better classification. To address these challenges, we propose a robust and explainable stacking ensemble model for multiclass brain tumor classification. To address these challenges, we propose a stacking ensemble model that combines EfficientNetB0, MobileNetV2, GoogleNet, and Multi-level CapsuleNet, using CatBoost as the meta-learner for improved feature aggregation and classification accuracy. This ensemble approach captures complex tumor characteristics while enhancing robustness and interpretability. The proposed model integrates EfficientNetB0, MobileNetV2, GoogleNet, and a Multi-level CapsuleNet within a stacking framework, utilizing CatBoost as the meta-learner to improve feature aggregation and classification accuracy. We created two large MRI datasets by merging data from four sources: BraTS, Msoud, Br35H, and SARTAJ. To tackle class imbalance, we applied Borderline-SMOTE and data augmentation. We also utilized feature extraction methods, along with PCA and Gray Wolf Optimization (GWO). Our model was validated through confidence interval analysis and statistical tests, demonstrating superior performance. Error analysis revealed misclassification trends, and we assessed computational efficiency regarding inference speed and resource usage. The proposed ensemble achieved 97.81% F1 score and 98.75% PR AUC on M1, and 98.32% F1 score with 99.34% PR AUC on M2. Moreover, the model consistently surpassed state-of-the-art CNNs, Vision Transformers, and other ensemble methods in classifying brain tumors across individual four datasets. Finally, we developed a web-based diagnostic tool that enables clinicians to interact with the proposed model and visualize decision-critical regions in MRI scans using Explainable Artificial Intelligence (XAI). This study connects high-performing AI models with real clinical applications, providing a reliable, scalable, and efficient diagnostic solution for brain tumor classification.
在MRI图像中早期检测脑肿瘤对于改善治疗效果至关重要。然而,深度学习模型面临着诸如数据集多样性有限、类别不平衡和可解释性不足等挑战。大多数研究依赖于小型的单源数据集,并且没有结合不同的特征提取技术来进行更好的分类。为了应对这些挑战,我们提出了一种用于多类脑肿瘤分类的强大且可解释的堆叠集成模型。为了应对这些挑战,我们提出了一种堆叠集成模型,该模型结合了EfficientNetB0、MobileNetV2、GoogleNet和多级胶囊网络(Multi-level CapsuleNet),使用CatBoost作为元学习器以提高特征聚合和分类准确率。这种集成方法在增强鲁棒性和可解释性的同时捕捉复杂的肿瘤特征。所提出的模型在堆叠框架内集成了EfficientNetB0、MobileNetV2、GoogleNet和一个多级胶囊网络,利用CatBoost作为元学习器来提高特征聚合和分类准确率。我们通过合并来自四个来源(BraTS、Msoud、Br35H和SARTAJ)的数据创建了两个大型MRI数据集。为了解决类别不平衡问题,我们应用了边界合成少数类过采样技术(Borderline-SMOTE)和数据增强。我们还利用了特征提取方法,以及主成分分析(PCA)和灰狼优化算法(GWO)。我们的模型通过置信区间分析和统计测试进行了验证,展示了卓越的性能。误差分析揭示了误分类趋势,并且我们评估了关于推理速度和资源使用的计算效率。所提出的集成模型在M1上实现了97.81%的F1分数和98.75%的PR AUC,在M2上实现了98.32%的F1分数和99.34%的PR AUC。此外,在对四个单独数据集上的脑肿瘤进行分类时,该模型始终超越了最先进的卷积神经网络(CNNs)、视觉Transformer和其他集成方法。最后,我们开发了一个基于网络的诊断工具,使临床医生能够与所提出的模型进行交互,并使用可解释人工智能(XAI)在MRI扫描中可视化决策关键区域。这项研究将高性能人工智能模型与实际临床应用联系起来,为脑肿瘤分类提供了一个可靠、可扩展且高效的诊断解决方案。