Suppr超能文献

应用双 GAN 机制和特征提取技术对高度不平衡数据进行高级脑肿瘤分类的可解释集成方法。

An explainable ensemble approach for advanced brain tumor classification applying Dual-GAN mechanism and feature extraction techniques over highly imbalanced data.

机构信息

Department of Computer Science and Engineering, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.

Department of Computer Science and Engineering, Sylhet International University, Sylhet, Bangladesh.

出版信息

PLoS One. 2024 Sep 27;19(9):e0310748. doi: 10.1371/journal.pone.0310748. eCollection 2024.

Abstract

Brain tumors are one of the leading diseases imposing a huge morbidity rate across the world every year. Classifying brain tumors accurately plays a crucial role in clinical diagnosis and improves the overall healthcare process. ML techniques have shown promise in accurately classifying brain tumors based on medical imaging data such as MRI scans. These techniques aid in detecting and planning treatment early, improving patient outcomes. However, medical image datasets are frequently affected by a significant class imbalance, especially when benign tumors outnumber malignant tumors in number. This study presents an explainable ensemble-based pipeline for brain tumor classification that integrates a Dual-GAN mechanism with feature extraction techniques, specifically designed for highly imbalanced data. This Dual-GAN mechanism facilitates the generation of synthetic minority class samples, addressing the class imbalance issue without compromising the original quality of the data. Additionally, the integration of different feature extraction methods facilitates capturing precise and informative features. This study proposes a novel deep ensemble feature extraction (DeepEFE) framework that surpasses other benchmark ML and deep learning models with an accuracy of 98.15%. This study focuses on achieving high classification accuracy while prioritizing stable performance. By incorporating Grad-CAM, it enhances the transparency and interpretability of the overall classification process. This research identifies the most relevant and contributing parts of the input images toward accurate outcomes enhancing the reliability of the proposed pipeline. The significantly improved Precision, Sensitivity and F1-Score demonstrate the effectiveness of the proposed mechanism in handling class imbalance and improving the overall accuracy. Furthermore, the integration of explainability enhances the transparency of the classification process to establish a reliable model for brain tumor classification, encouraging their adoption in clinical practice promoting trust in decision-making processes.

摘要

脑肿瘤是全球每年导致高发病率的主要疾病之一。准确地对脑肿瘤进行分类在临床诊断中起着至关重要的作用,可以改善整体医疗保健过程。机器学习 (ML) 技术已显示出在基于 MRI 扫描等医学成像数据准确分类脑肿瘤方面的潜力。这些技术有助于早期发现和计划治疗,改善患者的预后。然而,医学图像数据集经常受到严重类别不平衡的影响,特别是良性肿瘤数量多于恶性肿瘤时。本研究提出了一种基于可解释集成的脑肿瘤分类管道,该管道集成了双 GAN 机制和特征提取技术,专门针对高度不平衡的数据设计。该双 GAN 机制有助于生成合成少数类样本,解决类别不平衡问题,同时又不影响原始数据的质量。此外,集成不同的特征提取方法有助于捕捉精确和信息丰富的特征。本研究提出了一种新颖的深度集成特征提取 (DeepEFE) 框架,该框架的准确率达到 98.15%,超过了其他基准 ML 和深度学习模型。本研究侧重于在优先考虑稳定性能的同时实现高分类精度。通过引入 Grad-CAM,它增强了整体分类过程的透明度和可解释性。本研究确定了输入图像中对准确结果最相关和最有贡献的部分,从而提高了所提出管道的可靠性。所提出机制在处理类别不平衡和提高整体准确性方面的显著改进的精度、灵敏度和 F1 得分证明了其有效性。此外,可解释性的集成提高了分类过程的透明度,为脑肿瘤分类建立了一个可靠的模型,鼓励将其应用于临床实践中,从而在决策过程中建立信任。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验