Mao Qingyi, Shang Tianfeng, Xu Wen, Zhai Silong, Zhang Chengyun, Guo Jingjing, Su An, Li Chengxi, Duan Hongliang
College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
AI Department, Shenzhen Highslab Therapeutics Inc., Shenzhen 518000, China.
J Chem Theory Comput. 2025 May 13;21(9):4979-4991. doi: 10.1021/acs.jctc.5c00139. Epub 2025 Apr 21.
Artificial intelligence-based peptide structure prediction methods have revolutionized biomolecular science. However, restricting predictions to peptides composed solely of 20 natural amino acids significantly limits their practical application; as such, peptides often demonstrate poor stability under physiological conditions. Here, we present NCPepFold, a computational approach that can utilize a specific cyclic position matrix to directly predict the structure of cyclic peptides with noncanonical amino acids. By integrating multigranularity information at the residual and atomic level, along with fine-tuning techniques, NCPepFold significantly improves prediction accuracy, with the average peptide root-mean-square deviation (RMSD) for cyclic peptides being 1.640 Å. In summary, this is a novel deep learning model designed specifically for cyclic peptides with noncanonical amino acids, offering great potential for peptide drug design and advancing biomedical research.
基于人工智能的肽结构预测方法彻底改变了生物分子科学。然而,将预测局限于仅由20种天然氨基酸组成的肽,极大地限制了它们的实际应用;因此,肽在生理条件下通常表现出较差的稳定性。在这里,我们提出了NCPepFold,这是一种计算方法,它可以利用特定的循环位置矩阵直接预测含有非标准氨基酸的环肽的结构。通过在残基和原子水平整合多粒度信息以及微调技术,NCPepFold显著提高了预测准确性,环肽的平均肽根均方偏差(RMSD)为1.640 Å。总之,这是一个专门为含有非标准氨基酸的环肽设计的新型深度学习模型,为肽药物设计和推进生物医学研究提供了巨大潜力。