Suppr超能文献

使用AlphaFold进行环肽结构预测与设计。

Cyclic peptide structure prediction and design using AlphaFold.

作者信息

Rettie Stephen A, Campbell Katelyn V, Bera Asim K, Kang Alex, Kozlov Simon, De La Cruz Joshmyn, Adebomi Victor, Zhou Guangfeng, DiMaio Frank, Ovchinnikov Sergey, Bhardwaj Gaurav

机构信息

Molecular and Cell Biology program, University of Washington, Seattle, WA, USA.

Institute for Protein Design, University of Washington, Seattle, WA, USA.

出版信息

bioRxiv. 2023 Feb 26:2023.02.25.529956. doi: 10.1101/2023.02.25.529956.

Abstract

Deep learning networks offer considerable opportunities for accurate structure prediction and design of biomolecules. While cyclic peptides have gained significant traction as a therapeutic modality, developing deep learning methods for designing such peptides has been slow, mostly due to the small number of available structures for molecules in this size range. Here, we report approaches to modify the AlphaFold network for accurate structure prediction and design of cyclic peptides. Our results show this approach can accurately predict the structures of native cyclic peptides from a single sequence, with 36 out of 49 cases predicted with high confidence (pLDDT > 0.85) matching the native structure with root mean squared deviation (RMSD) less than 1.5 Å. Further extending our approach, we describe computational methods for designing sequences of peptide backbones generated by other backbone sampling methods and for design of new macrocyclic peptides. We extensively sampled the structural diversity of cyclic peptides between 7-13 amino acids, and identified around 10,000 unique design candidates predicted to fold into the designed structures with high confidence. X-ray crystal structures for seven sequences with diverse sizes and structures designed by our approach match very closely with the design models (root mean squared deviation < 1.0 Å), highlighting the atomic level accuracy in our approach. The computational methods and scaffolds developed here provide the basis for custom-designing peptides for targeted therapeutic applications.

摘要

深度学习网络为生物分子的精确结构预测和设计提供了大量机会。虽然环肽作为一种治疗方式已获得显著关注,但开发用于设计此类肽的深度学习方法进展缓慢,主要原因是该尺寸范围内分子的可用结构数量较少。在此,我们报告了修改AlphaFold网络以精确预测和设计环肽结构的方法。我们的结果表明,这种方法可以从单个序列准确预测天然环肽的结构,49个案例中有36个以高置信度(pLDDT > 0.85)预测,其预测结构与天然结构的均方根偏差(RMSD)小于1.5 Å。进一步扩展我们的方法,我们描述了用于设计由其他主链采样方法生成的肽主链序列以及设计新的大环肽的计算方法。我们广泛采样了7至13个氨基酸的环肽的结构多样性,并确定了约10,000个独特的设计候选物,预测它们能以高置信度折叠成设计结构。通过我们的方法设计的七个具有不同大小和结构的序列的X射线晶体结构与设计模型非常匹配(均方根偏差 < 1.0 Å),突出了我们方法在原子水平上的准确性。这里开发的计算方法和支架为定制设计用于靶向治疗应用的肽提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f589/9980166/f01fab00b20a/nihpp-2023.02.25.529956v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验