Bai Libing, Li Zongjin, Tang Chunyang, Song Changxin, Hu Feng
Computer College of Qinghai Normal University, Xining, Qinghai, China.
The State Key Laboratory of Tibetan Intelligence, Qinghai, Xining, China.
Front Genet. 2025 Apr 4;16:1560841. doi: 10.3389/fgene.2025.1560841. eCollection 2025.
With the rapid advancement of gene sequencing technologies, Traditional weighted gene co-expression network analysis (WGCNA), which relies on pairwise gene relationships, struggles to capture higher-order interactions and exhibits low computational efficiency when handling large, complex datasets.
To overcome these challenges, we propose a novel Weighted Gene Co-expression Hypernetwork Analysis (WGCHNA) based on weighted hypergraph, where genes are modeled as nodes and samples as hyperedges. By calculating the hypergraph Laplacian matrix, WGCHNA generates a topological overlap matrix for module identification through hierarchical clustering.
Results on four gene expression datasets show that WGCHNA outperforms WGCNA in module identification and functional enrichment. WGCHNA identifies biologically relevant modules with greater complexity, particularly in processes like neuronal energy metabolism linked to Alzheimer's disease. Additionally, functional enrichment analysis uncovers more comprehensive pathway hierarchies, revealing potential regulatory relationships and novel targets.
WGCHNA effectively addresses WGCNA's limitations, providing superior accuracy in detecting gene modules and deeper insights for disease research, making it a powerful tool for analyzing complex biological systems.
随着基因测序技术的快速发展,传统的加权基因共表达网络分析(WGCNA)依赖于成对基因关系,难以捕捉高阶相互作用,并且在处理大型复杂数据集时计算效率较低。
为了克服这些挑战,我们提出了一种基于加权超图的新型加权基因共表达超网络分析(WGCHNA),其中基因被建模为节点,样本被建模为超边。通过计算超图拉普拉斯矩阵,WGCHNA通过层次聚类生成用于模块识别的拓扑重叠矩阵。
在四个基因表达数据集上的结果表明,WGCHNA在模块识别和功能富集方面优于WGCNA。WGCHNA识别出具有更高复杂性的生物学相关模块,特别是在与阿尔茨海默病相关的神经元能量代谢等过程中。此外,功能富集分析揭示了更全面的通路层次结构,揭示了潜在的调控关系和新靶点。
WGCHNA有效地解决了WGCNA的局限性,在检测基因模块方面提供了更高的准确性,并为疾病研究提供了更深入的见解,使其成为分析复杂生物系统的强大工具。