School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
Genome Biol. 2024 Aug 5;25(1):207. doi: 10.1186/s13059-024-03357-w.
Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data space. We assume that such relationships can aid in characterizing cell type features and improving cell type recognition accuracy. To this end, we introduce scPriorGraph, a dual-channel graph neural network that integrates multi-level gene biosemantics. Experimental results demonstrate that scPriorGraph effectively aggregates feature values of similar cells using high-quality graphs, achieving state-of-the-art performance in cell type identification.
细胞类型识别是单细胞数据分析中不可或缺的分析步骤。为了解决基因表达数据中存在的高噪声问题,现有的计算方法往往忽略了基因之间有意义的生物学关系,而是选择将所有基因简化为统一的数据空间。我们假设这种关系可以帮助描述细胞类型特征并提高细胞类型识别的准确性。为此,我们引入了 scPriorGraph,这是一种双通道图神经网络,它集成了多层次的基因生物语义。实验结果表明,scPriorGraph 可以有效地使用高质量的图来聚合相似细胞的特征值,在细胞类型识别方面达到了最新的性能。