Bartol Thomas M, Ordyan Mariam, Sejnowski Terrence J, Rangamani Padmini, Kennedy Mary B
The Salk Institute for Biological Studies, La Jolla, CA, United States.
Department of Neurobiology, University of California, San Diego, La Jolla, CA, United States.
Front Synaptic Neurosci. 2025 Apr 4;17:1547948. doi: 10.3389/fnsyn.2025.1547948. eCollection 2025.
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). A critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure . We examine the effects of "CaM-trapping," a process in which the affinity for Ca/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
长时程增强(LTP)是一种生物化学过程,是中枢神经系统(CNS)中兴奋性谷氨酸能突触学习的基础。LTP的一个关键早期驱动因素是丰富的突触后酶钙/钙调蛋白依赖性蛋白激酶II(CaMKII)的自磷酸化。自磷酸化由通过强烈突触活动激活的NMDA受体流入的钙引发。其寿命最终由自磷酸化速率与蛋白磷酸酶1(PP1)去磷酸化速率的平衡决定。在这里,我们使用MCell4对棘突突触活动期间CaMKII的自磷酸化和去磷酸化进行了建模,MCell4是一个开源计算机程序,用于创建基于粒子的随机且空间真实的细胞微化学模型。该模型整合了四个早期关于棘突钙和CaMKII活性调节不同方面的详细模型,每个模型都纳入了实验测量的生化参数,并已根据实验数据进行了验证。我们通过表明该复合模型准确预测了先前关于NMDA受体激活效应的实验测量结果来验证它,包括LTP诱导对磷酸酶活性的高敏感性以及突触刺激结束后自磷酸化持续数分钟。然后我们使用该模型探究难以测量的CaMKII自磷酸化调节机制的各个方面。我们研究了“钙调蛋白捕获”的影响,在这个过程中,自磷酸化后对钙/钙调蛋白的亲和力增加数百倍。我们发现,如先前假设的那样,在复杂刺激后,钙调蛋白捕获不会增加全酶中自磷酸化亚基的比例。相反,钙调蛋白捕获可能通过空间位阻阻止蛋白磷酸酶1的去磷酸化,从而显著延长自磷酸化CaMKII的寿命。这些结果为实验测量结合的钙/钙调蛋白对CaMKII去磷酸化的抑制程度提供了动力。突触棘中复杂刺激生化效应的复合MCell4模型是对突触可塑性机制进行真实、详细剖析的强大新工具。