Angrish Michelle, Thayer Kristina A, Schulz Brittany, Nowak Artur, Persad Amanda, Phillips Allison L, Rice Glenn, Shannon Teresa, Wilkins A Amina, Christensen Krista, Radke Elizabeth G, Shapiro Andrew, Taylor Michele M, Walker Vickie R, Rooney Andrew A, Watford Sean M
Center for Public Health and Environmental Assessment, Chemical and Pollutant Assessment Division, US Environmental Protection Agency, Durham, NC, USA.
Environmental Protection Agency National Student Services Contract, Oak Ridge Associated Universities, Oak Ridge, TN, USA.
Evid Based Toxicol. 2024 Nov 11;2(1):2421192. doi: 10.1080/2833373x.2024.2421192.
Systematic review (SR) methods are relied upon to develop transparent, unbiased, and standardized human health chemical assessments. The expectation is that these assessments will have discovered and evaluated all of the available information in a trackable, transparent, and reproducible manner inherent to SR principles. The challenge is that chemical assessment development relies on mostly literature-based data using manual approaches that are not scalable. Various SR tools have increased the efficiency of assessment development by implementing semi-automated approaches (human in the loop) for data discovery (literature search and screening) and enhanced data repositories with standardized data collection and curation frameworks. Yet filling these repositories with data extractions has remained a manual process and connecting the various tools together in one interoperable workflow remains challenging.
The objective of this protocol is to explore incorporation of a semi-automated data extraction tool (Dextr) into a chemical assessment workflow and understand if the new tool improves overall user experience.
The workflow will use template systematic evidence map (SEM) methods developed by the Environmental Protection Agency for the identification of included studies. The methods described focus on the data extraction component of the workflow using a fully manual or a semi-automated (human in the loop) data extraction approach. Both the manual and semi-automated data extractions will occur in Dextr. The new data extraction tool will be evaluated for user experience and whether the data extracted using the automated approach meets or exceeds metrics (precision, recall, and F1 score) for a fully manual data extraction.
Artificial intelligence (AI) and machine learning (ML) methods have rapidly advanced and show promise in achieving operational efficiencies in chemical assessment workflows by supporting automated or semi-automated SR methods, possibly improving the user experience. Yet incorporating advances into sustainable workflows has remained a challenge. Whether using a tool like Dextr improves operational efficiencies and the user experience remains to be determined.
系统评价(SR)方法被用于开展透明、无偏倚且标准化的人类健康化学评估。预期这些评估将以SR原则所固有的可追踪、透明且可重复的方式发现并评估所有可用信息。挑战在于化学评估的开展主要依赖基于文献的数据,采用的是不可扩展的手动方法。各种SR工具通过实施半自动方法(人工参与)进行数据发现(文献检索和筛选),并利用标准化的数据收集和管理框架增强了数据存储库,从而提高了评估开发的效率。然而,用数据提取来填充这些存储库仍然是一个手动过程,并且将各种工具连接到一个可互操作的工作流程中仍然具有挑战性。
本方案的目的是探索将半自动数据提取工具(Dextr)纳入化学评估工作流程,并了解新工具是否能改善整体用户体验。
该工作流程将使用美国环境保护局开发的模板系统证据图(SEM)方法来识别纳入研究。所描述的方法侧重于工作流程的数据提取部分,采用完全手动或半自动(人工参与)数据提取方法。手动和半自动数据提取都将在Dextr中进行。将对新的数据提取工具进行用户体验评估,以及使用自动方法提取的数据是否达到或超过完全手动数据提取的指标(精度、召回率和F1分数)。
人工智能(AI)和机器学习(ML)方法发展迅速,通过支持自动化或半自动SR方法,在实现化学评估工作流程的运营效率方面显示出前景,可能会改善用户体验。然而,将这些进展纳入可持续工作流程仍然是一个挑战。使用像Dextr这样的工具是否能提高运营效率和用户体验还有待确定。