Sciome LLC, 2 Davis Drive Durham, NC 27709, USA.
Sciome LLC, 2 Davis Drive Durham, NC 27709, USA.
Environ Int. 2020 May;138:105623. doi: 10.1016/j.envint.2020.105623. Epub 2020 Mar 20.
In the screening phase of systematic review, researchers use detailed inclusion/exclusion criteria to decide whether each article in a set of candidate articles is relevant to the research question under consideration. A typical review may require screening thousands or tens of thousands of articles in and can utilize hundreds of person-hours of labor.
Here we introduce SWIFT-Active Screener, a web-based, collaborative systematic review software application, designed to reduce the overall screening burden required during this resource-intensive phase of the review process. To prioritize articles for review, SWIFT-Active Screener uses active learning, a type of machine learning that incorporates user feedback during screening. Meanwhile, a negative binomial model is employed to estimate the number of relevant articles remaining in the unscreened document list. Using a simulation involving 26 diverse systematic review datasets that were previously screened by reviewers, we evaluated both the document prioritization and recall estimation methods.
On average, 95% of the relevant articles were identified after screening only 40% of the total reference list. In the 5 document sets with 5,000 or more references, 95% recall was achieved after screening only 34% of the available references, on average. Furthermore, the recall estimator we have proposed provides a useful, conservative estimate of the percentage of relevant documents identified during the screening process.
SWIFT-Active Screener can result in significant time savings compared to traditional screening and the savings are increased for larger project sizes. Moreover, the integration of explicit recall estimation during screening solves an important challenge faced by all machine learning systems for document screening: when to stop screening a prioritized reference list. The software is currently available in the form of a multi-user, collaborative, online web application.
在系统评价的筛选阶段,研究人员使用详细的纳入/排除标准来确定候选文章集中的每一篇文章是否与正在考虑的研究问题相关。一项典型的综述可能需要筛选数千或数万篇文章,并需要数百个人工时的劳动。
在这里,我们介绍了 SWIFT-Active Screener,这是一个基于网络的协作式系统评价软件应用程序,旨在减少审查过程中这个资源密集型阶段所需的总体筛选负担。为了对文章进行优先审查,SWIFT-Active Screener 使用了主动学习,这是一种在筛选过程中结合用户反馈的机器学习类型。同时,使用负二项式模型来估计未筛选文献列表中剩余的相关文章数量。我们使用 26 个先前由评审员筛选的不同系统评价数据集进行模拟,评估了文献优先级排序和召回估计方法。
平均而言,在筛选完参考列表的 40%后,就可以确定 95%的相关文章。在 5 个包含 5000 篇或更多参考文献的文献集中,平均在筛选完可用参考文献的 34%后,就可以达到 95%的召回率。此外,我们提出的召回估计器提供了在筛选过程中确定相关文献百分比的有用且保守的估计。
与传统的筛选方法相比,SWIFT-Active Screener 可以显著节省时间,并且对于较大的项目规模,节省的时间更多。此外,在筛选过程中集成明确的召回估计解决了所有机器学习系统在文献筛选中面临的一个重要挑战:何时停止筛选优先排序的参考文献列表。该软件目前以多用户、协作、在线网络应用程序的形式提供。