Salama Vivian, Humbert-Vidan Laia, Godinich Brandon, Wahid Kareem A, ElHabashy Dina M, Naser Mohamed A, He Renjie, Mohamed Abdallah S R, Sahli Ariana J, Hutcheson Katherine A, Gunn Gary Brandon, Rosenthal David I, Fuller Clifton D, Moreno Amy C
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
Department of Medical Oncology and Radiation Oncology, West Virginia University Cancer Institute, Morgantown, WV, United States.
Front Pain Res (Lausanne). 2025 Apr 4;6:1567632. doi: 10.3389/fpain.2025.1567632. eCollection 2025.
Acute pain is common among oral cavity/oropharyngeal cancer (OCC/OPC) patients undergoing radiation therapy (RT). This study aimed to predict acute pain severity and opioid doses during RT using machine learning (ML), facilitating risk-stratification models for clinical trials.
A retrospective study examined 900 OCC/OPC patients treated with RT during 2017-2023. Pain intensity was assessed using NRS (0-none, 10-worst) and total opioid doses were calculated using morphine equivalent daily dose (MEDD) conversion factors. Analgesics efficacy was assessed using combined pain intensity and total MEDD. ML predictive models were developed and validated, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM). Model performance was evaluated using discrimination and calibration metrics, while feature importance was investigated using bootstrapping.
For predicting pain intensity, the GBM demonstrated superior discrimination performance (AUROC 0.71, recall 0.39, and 1 score 0.48). For predicting the total MEDD, LR model outperformed other models (AUROC 0.67). For predicting analgesics efficacy, the SVM achieved the highest specificity (0.97), while the RF and GBM models achieved the highest AUROC (0.68). RF model emerged as the best calibrated model with an ECE of 0.02 and 0.05 for pain intensity and MEDD prediction, respectively. Baseline pain scores and vital signs demonstrated the most contributing features.
ML models showed promise in predicting end-of-treatment pain intensity, opioid requirements and analgesics efficacy in OCC/OPC patients. Baseline pain score and vital signs are crucial predictors. Their implementation in clinical practice could facilitate early risk stratification and personalized pain management.
急性疼痛在接受放射治疗(RT)的口腔/口咽癌(OCC/OPC)患者中很常见。本研究旨在使用机器学习(ML)预测RT期间的急性疼痛严重程度和阿片类药物剂量,以促进临床试验的风险分层模型。
一项回顾性研究检查了2017年至2023年期间接受RT治疗的900例OCC/OPC患者。使用数字评分量表(NRS,0-无,10-最严重)评估疼痛强度,并使用吗啡等效日剂量(MEDD)转换因子计算阿片类药物总剂量。使用疼痛强度和总MEDD综合评估镇痛效果。开发并验证了ML预测模型,包括逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)和梯度提升机(GBM)。使用区分度和校准指标评估模型性能,同时使用自助法研究特征重要性。
对于预测疼痛强度,GBM表现出卓越的区分性能(曲线下面积[AUROC]为0.71,召回率为0.39,F1分数为0.48)。对于预测总MEDD,LR模型优于其他模型(AUROC为0.67)。对于预测镇痛效果,SVM具有最高的特异性(0.97),而RF和GBM模型具有最高的AUROC(0.68)。RF模型是校准最佳的模型,在预测疼痛强度和MEDD时的预期校准误差(ECE)分别为0.02和0.05。基线疼痛评分和生命体征显示出最具贡献性的特征。
ML模型在预测OCC/OPC患者治疗结束时的疼痛强度、阿片类药物需求和镇痛效果方面显示出前景。基线疼痛评分和生命体征是关键预测因素。它们在临床实践中的应用可以促进早期风险分层和个性化疼痛管理。