Suppr超能文献

VMoO(0D@2D/1D)复合材料上核壳结构NiB@Ni(BO)的结构工程:提高非对称超级电容器高能量密度的先进策略

Structural Engineering of Core-Shell NiB@Ni(BO) on VMoO (0D@2D/1D) Composites: Advanced Strategies for Enhancing High Energy Density in Asymmetric Supercapacitors.

作者信息

Milton Ahamed, Al Mahmud Abdullah, Sukanya Ramaraj, Karthik Raj, Kamaraj Eswaran, Breslin Carmel B, Shafi P Muhammed, Shim Jae-Jin

机构信息

School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea.

Department of Chemistry, Maynooth University, Maynooth, County Kildare W23 F2H6, Ireland.

出版信息

Langmuir. 2025 Apr 29;41(16):10469-10480. doi: 10.1021/acs.langmuir.5c00378. Epub 2025 Apr 21.

Abstract

The development of hierarchical core-shell structures and multicomponent metal boride/metal oxide-based composites presents a promising strategy to enhance supercapacitor (SC) performance. In this study, we synthesized a NiB@Ni(BO) (0D@2D) core-shell structure and integrated it with VMoO (VMO) rods (1D) to form a NiB@Ni(BO)/VMO (NB@NBO/VMO (0D@2D/1D)) composite. This composite was then used as an electrode material on a flexible carbon cloth (CC) substrate for SC applications. The 1D-VMO rods were derived from V-doped MoSe nanosheets via hydrothermal synthesis and calcination, while the NB@NBO/VMO composite was obtained by using a liquid-phase method. Structural, compositional, and morphological characterizations were conducted using XRD, XPS, FE-SEM, and TEM-EDS. In a three-electrode system, the NB@NBO/VMO-50 composite showed an impressive of 698 F g at 1 A g, ascribed to its unique core-shell architecture, which enhances contact and faradaic properties, shortens ion diffusion paths, and provides abundant active sites. Notably, the NB@NBO/VMO-50 displayed excellent cyclic stability, retaining 75.1% of its capacitance after 10,000 cycles at 10 A g. This performance is better than those of other electrodes, including pristine VMO/CC, NB/CC, NB@NBO/VMO-25, and NB@NBO/VMO-75. When evaluated in a two-electrode asymmetric SC system, the NB@NBO/VMO-50/CC||rGO device operated at 1.6 V and delivered a high energy density (ED) of 40.5 Wh kg at a power density (PD) of 800 W kg. It also reached a PD of 16,000 W kg while maintaining an ED of 23.5 Wh kg. The device also showed remarkable long-term durability, maintaining 79.3% of its capacitance and 99.9% Coulombic efficiency after 8000 charge-discharge cycles at 8 A g, demonstrating its strong potential for next-generation energy storage applications.

摘要

分级核壳结构和多组分金属硼化物/金属氧化物基复合材料的开发为提高超级电容器(SC)性能提供了一种很有前景的策略。在本研究中,我们合成了NiB@Ni(BO)(0D@2D)核壳结构,并将其与VMoO(VMO)棒(1D)集成,形成NiB@Ni(BO)/VMO(NB@NBO/VMO(0D@2D/1D))复合材料。然后将该复合材料用作柔性碳布(CC)基底上的电极材料用于SC应用。一维VMO棒是通过水热合成和煅烧从V掺杂的MoSe纳米片衍生而来,而NB@NBO/VMO复合材料则通过液相法获得。使用XRD、XPS、FE-SEM和TEM-EDS进行了结构、成分和形态表征。在三电极系统中,NB@NBO/VMO-50复合材料在1 A g下表现出令人印象深刻的698 F g的比电容,这归因于其独特的核壳结构,该结构增强了接触和法拉第性能,缩短了离子扩散路径,并提供了丰富的活性位点。值得注意的是,NB@NBO/VMO-50表现出优异的循环稳定性,在10 A g下循环10000次后仍保留其电容的75.1%。该性能优于其他电极,包括原始VMO/CC、NB/CC、NB@NBO/VMO-25和NB@NBO/VMO-75。在两电极不对称SC系统中进行评估时,NB@NBO/VMO-50/CC||rGO器件在1.6 V下运行,在功率密度(PD)为800 W kg时提供了40.5 Wh kg的高能量密度(ED)。它还达到了16000 W kg的PD,同时保持23.5 Wh kg的ED。该器件还表现出显著的长期耐久性,在8 A g下进行8000次充放电循环后,保持其电容的79.3%和99.9%的库仑效率,证明了其在下一代储能应用中的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e474/12044688/556e891a4cfe/la5c00378_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验