Suppr超能文献

铟改性的镍-锡负载氧化锆催化剂用于CO选择性加氢制甲醇

Ni-Sn-Supported ZrO Catalysts Modified by Indium for Selective CO Hydrogenation to Methanol.

作者信息

Hengne Amol M, Samal Akshaya K, Enakonda Linga Reddy, Harb Moussab, Gevers Lieven E, Anjum Dalaver H, Hedhili Mohamed N, Saih Youssef, Huang Kuo-Wei, Basset Jean-Marie

机构信息

KAUST Catalysis Center, Division of Physical Sciences and Engineering and Imaging and Characterization Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagaram, Bangalore 562112, India.

出版信息

ACS Omega. 2018 Apr 2;3(4):3688-3701. doi: 10.1021/acsomega.8b00211. eCollection 2018 Apr 30.

Abstract

Ni and NiSn supported on zirconia (ZrO) and on indium (In)-incorporated zirconia (InZrO) catalysts were prepared by a wet chemical reduction route and tested for hydrogenation of CO to methanol in a fixed-bed isothermal flow reactor at 250 °C. The mono-metallic Ni (5%Ni/ZrO) catalysts showed a very high selectivity for methane (99%) during CO hydrogenation. Introduction of Sn to this material with the following formulation 5Ni5Sn/ZrO (5% Ni-5% Sn/ZrO) showed the rate of methanol formation to be 0.0417 μmol/(g·s) with 54% selectivity. Furthermore, the combination NiSn supported on InZrO (5Ni5Sn/10InZrO) exhibited a rate of methanol formation 10 times higher than that on 5Ni/ZrO (0.1043 μmol/(g·s)) with 99% selectivity for methanol. All of these catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy, CO-temperature-programmed desorption, and density functional theory (DFT) studies. Addition of Sn to Ni catalysts resulted in the formation of a NiSn alloy. The NiSn alloy particle size was kept in the range of 10-15 nm, which was evidenced by HRTEM study. DFT analysis was carried out to identify the surface composition as well as the structural location of each element on the surface in three compositions investigated, namely, NiSn, NiSn, and NiSn bimetallic nanoclusters, and results were in agreement with the STEM and electron energy-loss spectroscopy results. Also, the introduction of "Sn" and "In" helped improve the reducibility of Ni oxide and the basic strength of catalysts. Considerable details of the catalytic and structural properties of the Ni, NiSn, and NiSnIn catalyst systems were elucidated. These observations were decisive for achieving a highly efficient formation rate of methanol via CO by the H reduction process with high methanol selectivity.

摘要

通过湿化学还原路线制备了负载在氧化锆(ZrO)和铟(In)掺杂氧化锆(InZrO)上的镍和镍锡催化剂,并在250℃的固定床等温流动反应器中测试了其将CO加氢制甲醇的性能。单金属镍(5%Ni/ZrO)催化剂在CO加氢过程中对甲烷表现出非常高的选择性(99%)。将锡引入该材料并制成5Ni5Sn/ZrO(5%Ni - 5%Sn/ZrO)配方后,甲醇生成速率为0.0417 μmol/(g·s),选择性为54%。此外,负载在InZrO上的NiSn组合(5Ni5Sn/10InZrO)的甲醇生成速率比5Ni/ZrO上高10倍(0.1043 μmol/(g·s)),对甲醇选择性为99%。所有这些催化剂都通过X射线衍射、高分辨率透射电子显微镜(HRTEM)、扫描透射电子显微镜(STEM)、X射线光电子能谱、CO程序升温脱附以及密度泛函理论(DFT)研究进行了表征。向镍催化剂中添加锡导致形成了NiSn合金。HRTEM研究证明,NiSn合金粒径保持在10 - 15 nm范围内。进行DFT分析以确定在所研究的三种组成(即NiSn、NiSn和NiSn双金属纳米团簇)中每种元素在表面的组成以及结构位置,结果与STEM和电子能量损失谱结果一致。此外,“Sn”和“In”的引入有助于提高氧化镍的还原性和催化剂的碱强度。阐明了Ni、NiSn和NiSnIn催化剂体系催化和结构性质的大量细节。这些观察结果对于通过H还原过程以高甲醇选择性实现高效的CO制甲醇生成速率具有决定性作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f405/6641425/85333326acc9/ao-2018-00211y_0021.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验