Suppr超能文献

信号通路在子宫内膜癌中的作用。

Role of signaling pathways in endometrial cancer.

作者信息

Balhara Nikita, Yadav Ritu, Chauhan Meenakshi B

机构信息

Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.

Department of Obstetrics and Gynecology, PGIMS, Rohtak, Haryana, 124001, India.

出版信息

Mol Biol Rep. 2025 Apr 21;52(1):408. doi: 10.1007/s11033-025-10523-1.

Abstract

Endometrial cancer (EC) is a prevalent gynecological malignancy with a complex molecular landscape, contributing to significant global morbidity and mortality. Dysregulated signaling pathways such as PI3K/AKT/mTOR and RAS/RAF/MEK drive EC progression by promoting uncontrolled cell proliferation, survival, angiogenesis, and metastasis. Mutations in genes like PTEN and PIK3CA further underpin tumor aggressiveness. Molecular alterations in these pathways not only serve as biomarkers for prognosis but also guide the formulation of targeted therapies, such as mTOR inhibitors and anti-angiogenic agents. While such therapies show promise, optimizing their efficacy and minimizing adverse effects requires further research. A comprehensive approach integrating early detection (e.g., addressing postmenopausal bleeding), preventive strategies (e.g., managing obesity), increasing diagnostic sensitivity (e.g., transvaginal ultrasound) and advanced molecularly tailored treatments (e.g., AI & ML) is critical to reducing the burden of this disease. By targeting key signaling pathways, leveraging AI-driven methodologies, and addressing treatment resistance, we can enhance patient outcomes, also mitigate the rising global impact of EC.

摘要

子宫内膜癌(EC)是一种常见的妇科恶性肿瘤,其分子格局复杂,在全球范围内导致了较高的发病率和死亡率。PI3K/AKT/mTOR和RAS/RAF/MEK等信号通路失调,通过促进不受控制的细胞增殖、存活、血管生成和转移来推动EC进展。PTEN和PIK3CA等基因的突变进一步加剧了肿瘤的侵袭性。这些信号通路中的分子改变不仅可作为预后生物标志物,还指导靶向治疗药物的制定,如mTOR抑制剂和抗血管生成药物。虽然此类治疗显示出前景,但要优化其疗效并将不良反应降至最低,仍需进一步研究。综合采用早期检测(如处理绝经后出血)、预防策略(如控制肥胖)、提高诊断敏感性(如经阴道超声)和先进的分子靶向治疗(如人工智能和机器学习)对于减轻这种疾病的负担至关重要。通过靶向关键信号通路、利用人工智能驱动的方法以及解决治疗耐药性问题,我们可以改善患者预后,同时减轻EC在全球范围内日益增加的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验