Banat Heba, Csóka Ildikó, Kun-Szabó Fruzsina, Fodor Gergely H, Somogyi Petra, Peták Ferenc, Party Petra, Sztojkov-Ivanov Anita, Ducza Eszter, Berkecz Róbert, Gróf Ilona, Deli Mária A, Ambrus Rita
Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, H-6720 Szeged, Hungary.
Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Korányi fasor 9, Szeged, Hungary.
Int J Pharm. 2025 May 15;676:125610. doi: 10.1016/j.ijpharm.2025.125610. Epub 2025 Apr 19.
Pulmonary administration offers a promising needle-free approach for systemic delivery of nonsteroidal anti-inflammatory drugs (NSAIDs), improving bioavailability and reducing required doses. While mannitol and leucine are widely used in inhalation formulations, their potential to enhance systemic drug delivery via the pulmonary route remains largely unexplored. This study utilizes the nanocrystal agglomerates (NCAs) approach to develop an inhalable NSAID formulation, with ketoprofen (KTP) as a model drug. Wet media milling and nano spray drying were employed for NCA fabrication, and the roles of mannitol and leucine were evaluated individually and in combination. Notably, their combination exhibited synergy, overcoming limitations observed with individual excipients. Mannitol-based sample (K1M) reduced aerosol performance by increasing the mass median aerodynamic diameter (MMAD) to 4.5 µm, whereas leucine-based sample (K1L) improved aerosolization but resulted in a low MMAD (<1 µm), suggesting a high tendency for exhalation. The combined mannitol-leucine formulation (K1ML) achieved optimal aerosol performance, balancing dispersibility and controlled deposition. K1ML also exhibited the fastest drug release (99 % in 5 min) and enhanced permeability across the alveolar barrier while maintaining biocompatibility. Pharmacokinetic analysis confirmed that inhaled K1ML provided superior bioavailability (AUC 73 µg·h/mL) compared to oral KTP nanosuspension (42 µg·h/mL) and raw KTP (9 µg·h/mL). Nonetheless, prolonged inhalation in asthmatic models (ovalbumin-sensitised rats) impaired pulmonary function, emphasizing the need for dose optimization. These findings demonstrate that the mannitol-leucine combination in NCAs enhances systemic NSAID delivery, optimizing both aerosol performance and bioavailability. Future studies should refine dosing strategies to ensure long-term safety and clinical feasibility.
肺部给药为非甾体抗炎药(NSAIDs)的全身递送提供了一种有前景的无针方法,可提高生物利用度并减少所需剂量。虽然甘露醇和亮氨酸广泛用于吸入制剂,但它们通过肺部途径增强全身药物递送的潜力在很大程度上仍未得到探索。本研究利用纳米晶体聚集体(NCAs)方法开发一种可吸入的NSAIDs制剂,以酮洛芬(KTP)作为模型药物。采用湿介质研磨和纳米喷雾干燥制备NCAs,并分别和联合评估甘露醇和亮氨酸的作用。值得注意的是,它们的组合表现出协同作用,克服了单独使用辅料时观察到的局限性。基于甘露醇的样品(K1M)通过将质量中值空气动力学直径(MMAD)增加到4.5 µm而降低了气溶胶性能,而基于亮氨酸的样品(K1L)改善了雾化,但导致MMAD较低(<1 µm),表明呼出倾向较高。甘露醇 - 亮氨酸联合制剂(K1ML)实现了最佳的气溶胶性能,平衡了分散性和可控沉积。K1ML还表现出最快的药物释放(5分钟内释放99%),并在保持生物相容性的同时增强了跨肺泡屏障的通透性。药代动力学分析证实,与口服KTP纳米混悬液(42 µg·h/mL)和原料药KTP(9 µg·h/mL)相比,吸入K1ML具有更高的生物利用度(AUC 73 µg·h/mL)。尽管如此,在哮喘模型(卵清蛋白致敏大鼠)中长时间吸入会损害肺功能,强调了剂量优化的必要性。这些发现表明,NCAs中的甘露醇 - 亮氨酸组合可增强NSAIDs的全身递送,优化气溶胶性能和生物利用度。未来的研究应完善给药策略,以确保长期安全性和临床可行性。