文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

瑞马唑仑通过激活Nrf2信号通路减轻脂多糖诱导的行为缺陷和神经元损伤。

Remimazolam attenuated lipopolysaccharide-induced behavioral deficits and neuronal injury via activation of the Nrf2 pathway.

作者信息

Wei Yi, Pan Sining, Zhou Zhan, Yang Ying, Liu Tianxiao, Chen Jing, Xie Yubo

机构信息

Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.

Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Sci Rep. 2025 Apr 21;15(1):13784. doi: 10.1038/s41598-025-95379-y.


DOI:10.1038/s41598-025-95379-y
PMID:40258855
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12012220/
Abstract

Sepsis is a severe disorder that is always accompanied by brain injury and dysfunction. This study aimed to evaluate the effects of remimazolam, a new ultra-short-acting sedative, on LPS-induced neuronal injury, and the role of Nrf2 signaling pathway involved. LPS was administered to Sprague-Dawley rats in the presence or absence of remimazolam. Then the behavior analysis was performed by using the Morris Water Maze and Open Field Test. The levels of the Superoxide Dismutase (SOD) and Malondialdehyde (MDA), the neuronal apoptosis, and the expression of Nrf2, HO-1, and Bcl-2 were detected in the hippocampus. In vitro, primary hippocampal neurons were exposed to LPS with or without remimazolam administration. Then the cell viability, apoptosis, mitochondrial membrane potential (MMP), and intracellular ROS were measured to assess oxidative stress and neuron injury. The expression of Nrf2, and HO-1 was also determined by Western blotting. LPS triggered neuroapoptosis, evoked oxidative stress, and inhibited the expression of Nrf2, and HO-1 in rat hippocampus, which were attenuated by remimazolam treatment. Additionally, remimazolam alleviated LPS-induced cognitive dysfunction and anxiety‑like behaviors in rats. In vitro, remimazolam could ameliorate neuronal damage, decrease the production of ROS, and increase the MMP of neurons exposed to LPS, which was accompanied by an increase in the expression of Nrf2 and HO-1. However, ML385 (an Nrf2 inhibitor) reversed the beneficial effects of remimazolam on primary hippocampal neurons. These findings suggest that remimazolam exerted protective effects on LPS-induced hippocampal neuronal injury in vivo and in vitro, which was associated with activation of Nrf2 signaling. Further experiments are needed to fully explore the exact molecular mechanism of Nrf2 upstream and downstream of remimazolam and its effects on distinct brain regions, which will help to better understand the neural effects of remimazolam.

摘要

脓毒症是一种严重的病症,总是伴有脑损伤和功能障碍。本研究旨在评估新型超短效镇静剂瑞米唑仑对脂多糖(LPS)诱导的神经元损伤的影响,以及所涉及的Nrf2信号通路的作用。在有或没有瑞米唑仑的情况下,将LPS给予Sprague-Dawley大鼠。然后通过莫里斯水迷宫和旷场试验进行行为分析。检测海马中超氧化物歧化酶(SOD)和丙二醛(MDA)的水平、神经元凋亡以及Nrf2、血红素加氧酶-1(HO-1)和Bcl-2的表达。在体外,原代海马神经元在有或没有给予瑞米唑仑的情况下暴露于LPS。然后测量细胞活力、凋亡、线粒体膜电位(MMP)和细胞内活性氧(ROS),以评估氧化应激和神经元损伤。还通过蛋白质免疫印迹法测定Nrf2和HO-1的表达。LPS引发大鼠海马神经细胞凋亡,诱发氧化应激,并抑制Nrf2和HO-1的表达,而瑞米唑仑治疗可使其减轻。此外,瑞米唑仑减轻了LPS诱导的大鼠认知功能障碍和焦虑样行为。在体外,瑞米唑仑可改善神经元损伤,减少ROS的产生,并增加暴露于LPS的神经元的MMP,同时伴有Nrf2和HO-1表达的增加。然而,ML385(一种Nrf2抑制剂)逆转了瑞米唑仑对原代海马神经元的有益作用。这些发现表明,瑞米唑仑在体内和体外对LPS诱导的海马神经元损伤均具有保护作用,这与Nrf2信号的激活有关。需要进一步的实验来充分探索瑞米唑仑Nrf2上下游的确切分子机制及其对不同脑区的影响,这将有助于更好地理解瑞米唑仑的神经效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/2e1467e95417/41598_2025_95379_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/43a99e719c02/41598_2025_95379_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/6fdd7d901608/41598_2025_95379_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/b4e021c530b5/41598_2025_95379_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/5bdb2a55c791/41598_2025_95379_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/66534da59197/41598_2025_95379_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/82b42fb2f42e/41598_2025_95379_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/4f81dde697ea/41598_2025_95379_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/c3fd088db061/41598_2025_95379_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/a7f60f3763ff/41598_2025_95379_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/baf8ba1571f2/41598_2025_95379_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/3fcf8a4441ab/41598_2025_95379_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/a3d212412203/41598_2025_95379_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/67d3df250e91/41598_2025_95379_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/2e1467e95417/41598_2025_95379_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/43a99e719c02/41598_2025_95379_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/6fdd7d901608/41598_2025_95379_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/b4e021c530b5/41598_2025_95379_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/5bdb2a55c791/41598_2025_95379_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/66534da59197/41598_2025_95379_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/82b42fb2f42e/41598_2025_95379_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/4f81dde697ea/41598_2025_95379_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/c3fd088db061/41598_2025_95379_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/a7f60f3763ff/41598_2025_95379_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/baf8ba1571f2/41598_2025_95379_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/3fcf8a4441ab/41598_2025_95379_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/a3d212412203/41598_2025_95379_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/67d3df250e91/41598_2025_95379_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb2/12012220/2e1467e95417/41598_2025_95379_Fig14_HTML.jpg

相似文献

[1]
Remimazolam attenuated lipopolysaccharide-induced behavioral deficits and neuronal injury via activation of the Nrf2 pathway.

Sci Rep. 2025-4-21

[2]
Remimazolam Attenuates LPS-Derived Cognitive Dysfunction via Subdiaphragmatic Vagus Nerve Target α7nAChR-Mediated Nrf2/HO-1 Signal Pathway.

Neurochem Res. 2024-5

[3]
Remimazolam Suppresses Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury by Regulating AKT/GSK-3β/NRF2 Pathway.

Drug Des Devel Ther. 2025-1-8

[4]
Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway.

Chem Biol Interact. 2018-2-16

[5]
Bakuchiol regulates TLR4/MyD88/NF-κB and Keap1/Nrf2/HO-1 pathways to protect against LPS-induced acute lung injury in vitro and in vivo.

Naunyn Schmiedebergs Arch Pharmacol. 2024-5

[6]
Neuroprotective effects of Lycium barbarum polysaccharide on light-induced oxidative stress and mitochondrial damage via the Nrf2/HO-1 pathway in mouse hippocampal neurons.

Int J Biol Macromol. 2023-11-1

[7]
Ergosterol Attenuates LPS-Induced Myocardial Injury by Modulating Oxidative Stress and Apoptosis in Rats.

Cell Physiol Biochem. 2018

[8]
Ginsenoside Rb1 Protects the Brain from Damage Induced by Epileptic Seizure via Nrf2/ARE Signaling.

Cell Physiol Biochem. 2018

[9]
Taraxasterol protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activation of Nrf2 signalling pathway.

Artif Cells Nanomed Biotechnol. 2020-12

[10]
Albumin Reduces Oxidative Stress and Neuronal Apoptosis via the ERK/Nrf2/HO-1 Pathway after Intracerebral Hemorrhage in Rats.

Oxid Med Cell Longev. 2021-2-24

本文引用的文献

[1]
Remimazolam alleviates myocardial ischemia/reperfusion injury and inflammation via inhibition of the NLRP3/IL‑1β pathway in mice.

Int J Mol Med. 2025-4

[2]
Remimazolam Suppresses Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury by Regulating AKT/GSK-3β/NRF2 Pathway.

Drug Des Devel Ther. 2025-1-8

[3]
Remimazolam inhibits apoptosis of endothelial and epithelial cells by activating the PI3K/AKT pathway in acute lung injury.

Int Immunopharmacol. 2025-2-6

[4]
Remimazolam protects the liver from ischemia-reperfusion injury by inhibiting the MAPK/ERK pathway.

BMC Anesthesiol. 2024-7-25

[5]
Albiflorin alleviates neuroinflammation of rats after MCAO via PGK1/Nrf2/HO-1 signaling pathway.

Int Immunopharmacol. 2024-8-20

[6]
Remimazolam attenuates myocardial ischemia-reperfusion injury by inhibiting the NF-ĸB pathway of macrophage inflammation.

Eur J Pharmacol. 2024-2-15

[7]
PSMC5 regulates microglial polarization and activation in LPS-induced cognitive deficits and motor impairments by interacting with TLR4.

J Neuroinflammation. 2023-11-24

[8]
Neuroprotective effects of sesamol against LPS-induced spatial learning and memory deficits are mediated via anti-inflammatory and antioxidant activities in the rat brain.

Avicenna J Phytomed. 2023

[9]
Midazolam Ameliorates Acute Liver Injury Induced by Carbon Tetrachloride Enhancing Nrf2 Signaling Pathway.

Front Pharmacol. 2022-7-8

[10]
Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice.

Nat Commun. 2022-5-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索