Suppr超能文献

一种用于对糖尿病患者的三维足部类型进行分类的新型深度学习方法。

A novel deep learning approach to classify 3D foot types of diabetic patients.

作者信息

Li Pui-Ling, Xiao Qin-Feng, Yick Kit-Lun, Liu Qi-Long, Zhang Li-Ying

机构信息

School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.

Laboratory for Artificial Intelligence in Design, Hong Kong Science Park, New Territories, Hong Kong SAR, China.

出版信息

Sci Rep. 2025 Apr 22;15(1):13819. doi: 10.1038/s41598-025-98471-5.

Abstract

Diabetes mellitus is a worldwide epidemic that leads to significant changes in foot shape, deformities, and ulcers. Precise classification of diabetic foot not only helps identify foot abnormalities but also facilitates personalized treatment and preventive measures through the engineering design of foot orthoses. In this study, we propose a novel deep learning method based on DiffusionNet which incorporates a self-attention mechanism and external features to classify the foot types of diabetic patients into six categories by using simple 3D foot images directly. Our approach achieves a high accuracy of 82.9% surpassing existing machine and deep learning methods. The proposed model offers a cost-effective way to analyse foot shapes and facilitate the customization process for both the footwear industry and medical applications.

摘要

糖尿病是一种全球性的流行病,会导致足部形状、畸形和溃疡发生显著变化。糖尿病足的精确分类不仅有助于识别足部异常,还能通过足部矫形器的工程设计促进个性化治疗和预防措施。在本研究中,我们提出了一种基于DiffusionNet的新型深度学习方法,该方法结合了自注意力机制和外部特征,通过直接使用简单的3D足部图像将糖尿病患者的足部类型分为六类。我们的方法实现了82.9%的高精度,超过了现有的机器学习和深度学习方法。所提出的模型提供了一种经济高效的方式来分析足部形状,并促进制鞋行业和医疗应用的定制过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e19/12012058/29e8a066ab24/41598_2025_98471_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验