Suppr超能文献

基于时间域 3D 点云深度学习的水面和水下人体姿态识别

Surface and underwater human pose recognition based on temporal 3D point cloud deep learning.

机构信息

School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.

School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, China.

出版信息

Sci Rep. 2024 Jan 2;14(1):55. doi: 10.1038/s41598-023-50658-4.

Abstract

Airborne surface and underwater human pose recognition are crucial for various safety and surveillance applications, including the detection of individuals in distress or drowning situations. However, airborne optical cameras struggle to achieve simultaneous imaging of the surface and underwater because of limitations imposed by visible-light wavelengths. To address this problem, this study proposes the use of light detection and ranging (LiDAR) to simultaneously detect humans on the surface and underwater, whereby human poses are recognized using a neural network designed for irregular data. First, a temporal point-cloud dataset was constructed for surface and underwater human pose recognition to enhance the recognition of comparable movements. Subsequently, radius outlier removal (ROR) and statistical outlier removal (SOR) were employed to alleviate the impact of noise and outliers in the constructed dataset. Finally, different combinations of secondary sampling methods and sample sizes were tested to improve recognition accuracy using PointNet++. The experimental results show that the highest recognition accuracy reached 97.5012%, demonstrating the effectiveness of the proposed human pose detection and recognition method.

摘要

空中和水下人体姿态识别对于各种安全和监控应用至关重要,包括对处于困境或溺水状态的人员的检测。然而,由于可见光波长的限制,空中光学相机难以同时对水面和水下进行成像。为了解决这个问题,本研究提出使用光探测和测距(LiDAR)来同时检测水面和水下的人体,通过使用针对不规则数据设计的神经网络来识别人体姿态。首先,构建了一个用于水面和水下人体姿态识别的时间点云数据集,以增强对类似运动的识别。然后,采用半径异常值去除(ROR)和统计异常值去除(SOR)方法来减轻构建数据集的噪声和异常值的影响。最后,测试了不同的二次抽样方法和样本大小的组合,以使用 PointNet++提高识别准确性。实验结果表明,最高识别准确率达到 97.5012%,证明了所提出的人体姿态检测和识别方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2fa/10762224/a7b6b131626f/41598_2023_50658_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验