文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cognitive load classification of mixed reality human computer interaction tasks based on multimodal sensor signals.

作者信息

Hou Yukang, Xie Qingsheng, Zhang Ning, Lv Jian

机构信息

Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang, 550025, China.

出版信息

Sci Rep. 2025 Apr 21;15(1):13732. doi: 10.1038/s41598-025-98891-3.


DOI:10.1038/s41598-025-98891-3
PMID:40259027
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12012078/
Abstract

Evaluating cognitive load in mixed reality (MR) has become a significant challenge in human-computer interaction (HCI). To address this, we established an MR multimodal experimental platform with three distinct environments to induce varying levels of cognitive load. Participants engaged in MR-based CNC machine tool interaction tasks within these environments. Using the built-in sensors of the HoloLens 2 mixed reality head-mounted display (MR-HMD) and wearable heart rate sensors, we collected device and physiological data from participants wearing the MR-HMD while performing these tasks. The cognitive load of participants was assessed by using the NASA-TLX questionnaire. Experimental results indicated that the operation time required in the MR environment increased by 49% under high cognitive load compared to low-load conditions. High-load environments also led to increased anxiety, frustration, and decreased performance among participants. Through comparative experiments, we identified suitable sensor data streams and algorithms for cognitive load classification and designed an MR digital twin factory cognitive load warning prototype system. This system utilizes an improved Transformer-CL algorithm, achieving a cognitive load classification accuracy of 95.83%. The system provides high cognitive load warnings, reducing the risks associated with high cognitive load tasks in MR work environments.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/40b84ad1c787/41598_2025_98891_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/1b02480f0212/41598_2025_98891_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/9fa689088e51/41598_2025_98891_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/375f82ac9509/41598_2025_98891_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/9599f0f3966a/41598_2025_98891_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/a4ecce79aa63/41598_2025_98891_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/c0c3b5da7a11/41598_2025_98891_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/c6bcb1986292/41598_2025_98891_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/be68fe425c97/41598_2025_98891_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/d1ee9cde974b/41598_2025_98891_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/40b84ad1c787/41598_2025_98891_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/1b02480f0212/41598_2025_98891_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/9fa689088e51/41598_2025_98891_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/375f82ac9509/41598_2025_98891_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/9599f0f3966a/41598_2025_98891_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/a4ecce79aa63/41598_2025_98891_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/c0c3b5da7a11/41598_2025_98891_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/c6bcb1986292/41598_2025_98891_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/be68fe425c97/41598_2025_98891_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/d1ee9cde974b/41598_2025_98891_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94ce/12012078/40b84ad1c787/41598_2025_98891_Fig10_HTML.jpg

相似文献

[1]
Cognitive load classification of mixed reality human computer interaction tasks based on multimodal sensor signals.

Sci Rep. 2025-4-21

[2]
Increased cognitive load in immersive virtual reality during visuomotor adaptation is associated with decreased long-term retention and context transfer.

J Neuroeng Rehabil. 2022-10-5

[3]
Cognitive Cost of Using Augmented Reality Displays.

IEEE Trans Vis Comput Graph. 2017-8-10

[4]
A Wearable Head Mounted Display Bio-Signals Pad System for Emotion Recognition.

Sensors (Basel). 2021-12-26

[5]
Atomic Head Movement Analysis for Wearable Four-Dimensional Task Load Recognition.

IEEE J Biomed Health Inform. 2019-1-18

[6]
Immersive virtual reality for learning exoskeleton-like virtual walking: a feasibility study.

J Neuroeng Rehabil. 2024-11-1

[7]
Toward Physiological Detection of a "Just-Right" Challenge Level for Motor Learning in Immersive Virtual Reality: Protocol for a Cross-Sectional Study.

JMIR Res Protoc. 2024-9-23

[8]
Reaching in Several Realities: Motor and Cognitive Benefits of Different Visualization Technologies.

IEEE Int Conf Rehabil Robot. 2019-6

[9]
Three-dimensional (3D) stimuli are always better than two-dimensional (2D) multi-tasking? A high cognitive load in 3D-MATB-II.

Behav Brain Res. 2025-2-4

[10]
Predicting and Explaining Cognitive Load, Attention, and Working Memory in Virtual Multitasking.

IEEE Trans Vis Comput Graph. 2025-5

本文引用的文献

[1]
The impact of environmental noise on drivers' cognitive abilities: A case study on in-vehicle voice interaction interfaces.

Appl Ergon. 2024-5

[2]
The impact of interventions on health, safety and environment in the process industry.

Heliyon. 2023-12-12

[3]
Accuracy of routine external ventricular drain placement following a mixed reality-guided twist-drill craniostomy.

Neurosurg Focus. 2024-1

[4]
The effect of working memory load on inattentional deafness during aeronautical decision-making.

Appl Ergon. 2023-11

[5]
K-Means Clustering Machine Learning Approach Reveals Groups of Homogeneous Individuals With Unique Brain Activation, Task, and Performance Dynamics Using fNIRS.

IEEE Trans Neural Syst Rehabil Eng. 2023

[6]
Multisensory alarm to benefit alarm identification and decrease workload: a feasibility study.

J Clin Monit Comput. 2023-8

[7]
Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network.

Bioengineering (Basel). 2023-3-15

[8]
Development and validation of a task load index for process control room operators (PCRO-TLX).

Ergonomics. 2023-12

[9]
Effects of an intelligent virtual assistant on office task performance and workload in a noisy environment.

Appl Ergon. 2023-5

[10]
Cognitive Analyses for Interface Design Using Dual N-Back Tasks for Mental Workload (MWL) Evaluation.

Int J Environ Res Public Health. 2023-1-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索