Suppr超能文献

使用长短期记忆网络从脑电图信号预测认知负荷

Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network.

作者信息

Yoo Gilsang, Kim Hyeoncheol, Hong Sungdae

机构信息

Creative Informatics and Computing Institute, Korea University, Seoul 02841, Republic of Korea.

College of Informatics, Korea University, Seoul 02841, Republic of Korea.

出版信息

Bioengineering (Basel). 2023 Mar 15;10(3):361. doi: 10.3390/bioengineering10030361.

Abstract

In recent years, the development of adaptive models to tailor instructional content to learners by measuring their cognitive load has become a topic of active research. Brain fog, also known as confusion, is a common cause of poor performance, and real-time detection of confusion is a challenging and important task for applications in online education and driver fatigue detection. In this study, we propose a deep learning method for cognitive load recognition based on electroencephalography (EEG) signals using a long short-term memory network (LSTM) with an attention mechanism. We obtained EEG signal data from a database of brainwave information and associated data on mental load. We evaluated the performance of the proposed LSTM technique in comparison with random forest, Adaptive Boosting (AdaBoost), support vector machine, eXtreme Gradient Boosting (XGBoost), and artificial neural network models. The experimental results demonstrated that the proposed approach had the highest accuracy of 87.1% compared to those of other algorithms, including random forest (64%), AdaBoost (64.31%), support vector machine (60.9%), XGBoost (67.3%), and artificial neural network models (71.4%). The results of this study support the development of a personalized adaptive learning system designed to measure and actively respond to learners' cognitive load in real time using wireless portable EEG systems.

摘要

近年来,通过测量学习者的认知负荷来定制教学内容的自适应模型的开发已成为一个活跃的研究课题。脑雾,也称为困惑,是表现不佳的常见原因,而实时检测困惑对于在线教育和驾驶员疲劳检测中的应用来说是一项具有挑战性且重要的任务。在本研究中,我们提出了一种基于脑电图(EEG)信号的深度学习方法,用于认知负荷识别,该方法使用带有注意力机制的长短期记忆网络(LSTM)。我们从脑电波信息数据库以及相关的心理负荷数据中获取了EEG信号数据。我们将所提出的LSTM技术的性能与随机森林、自适应提升(AdaBoost)、支持向量机、极端梯度提升(XGBoost)和人工神经网络模型进行了比较评估。实验结果表明,与其他算法相比,所提出的方法具有最高的准确率,达到87.1%,其他算法包括随机森林(64%)、AdaBoost(64.31%)、支持向量机(60.9%)、XGBoost(67.3%)和人工神经网络模型(71.4%)。本研究结果支持开发一种个性化自适应学习系统,该系统旨在使用无线便携式EEG系统实时测量并积极响应学习者的认知负荷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa92/10044910/f4f78c7b6a32/bioengineering-10-00361-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验