Diaz-Palacios Karen, López Navajas Pilar, Rodrigo Martín Bárbara, Matesanz Ruth, Luque-Ortega Juan R, Echarri Asier, Lietha Daniel
Molecular and Cellular Biosciences, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain.
Molecular Interactions Facility, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), Madrid, Spain.
Cell Commun Signal. 2025 Apr 21;23(1):190. doi: 10.1186/s12964-025-02201-3.
Focal Adhesion Kinase (FAK) is a key signaling molecule in focal adhesions (FAs) orchestrating the formation, maturation and turnover of the FA complex. A controlled FA lifecycle is essential for various cellular processes requiring mesenchymal cell migration and is harnessed by advanced cancers to initiate cancer invasion and metastasis. The mechanical force for migration is transmitted from actin stress fibers to FAs via specialized force transduction components in FAs. These forces are known to activate FA signaling, suggesting a communication between FA force transduction and FA signaling components, yet how this occurs mechanistically is unknown. Here we demonstrate that paxillin can act as an adaptor protein to connect FAK with the force transduction component vinculin. Our data show that this connection forms inefficient in the basal state but suggest Y925 phosphorylation in FAK as a key mechanism for optimal formation of the FAK:paxillin:vinculin linkage. This is achieved by switching binding of the paxillin LD2 motif from FAK to vinculin while keeping paxillin LD4 tethered to FAK. We further provide the first high-resolution crystal structure of LD2 bound to the vinculin tail domain, which importantly shows that vinculin can simultaneously link to actin. This therefore ensures an intact force transduction role of vinculin while tethered via paxillin to the signaling apparatus in FAs. With this data, all interactions of the force transmitting tether to FAK are structurally defined and we provide an atomic model for FAK force activation. In summary, we propose a phospho-regulated connection between signaling and force transduction components in FAs allowing for force induced activation of FA signaling.
粘着斑激酶(FAK)是粘着斑(FAs)中的关键信号分子,协调粘着斑复合物的形成、成熟和周转。受控的粘着斑生命周期对于需要间充质细胞迁移的各种细胞过程至关重要,并且被晚期癌症利用来启动癌症侵袭和转移。迁移的机械力通过粘着斑中的专门力转导成分从肌动蛋白应力纤维传递到粘着斑。已知这些力会激活粘着斑信号,这表明粘着斑力转导和粘着斑信号成分之间存在通讯,但这种通讯的机制尚不清楚。在这里,我们证明桩蛋白可以作为衔接蛋白,将FAK与力转导成分纽蛋白连接起来。我们的数据表明,这种连接在基础状态下形成效率低下,但表明FAK中的Y925磷酸化是FAK:桩蛋白:纽蛋白连接最佳形成的关键机制。这是通过将桩蛋白LD2基序的结合从FAK切换到纽蛋白,同时保持桩蛋白LD4与FAK相连来实现的。我们进一步提供了与纽蛋白尾部结构域结合的LD2的第一个高分辨率晶体结构,这重要地表明纽蛋白可以同时与肌动蛋白连接。因此,这确保了纽蛋白在通过桩蛋白与粘着斑中的信号装置相连时具有完整的力转导作用。基于这些数据,力传递系链与FAK的所有相互作用在结构上都已确定,并且我们提供了FAK力激活的原子模型。总之,我们提出了粘着斑中信号和力转导成分之间的磷酸化调节连接,允许力诱导粘着斑信号激活。