Xiao Jingwei, Ang Jing Wen, Zhong Xueying, Wong Darren Chen Pei, T Thivakar, Yow Ivan, Lee Chang Jie Mick, Foo Roger S-Y, Kanchanawong Pakorn, Low Boon Chuan
Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411, Singapore.
Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
ACS Appl Mater Interfaces. 2025 Jan 22;17(3):4463-4479. doi: 10.1021/acsami.4c15459. Epub 2025 Jan 8.
Focal adhesions (FAs) are force-bearing multiprotein complexes, whose nanoscale organization and signaling are essential for cell growth and differentiation. However, the specific organization of FA components to exert spatiotemporal activation of FA proteins for force sensing and transduction remains unclear. In this study, we unveil the intricacies of FA protein nanoarchitecture and that its dynamics are coordinated by a molecular scaffold protein, BNIP-2, to initiate downstream signal transduction for cardiomyoblast differentiation. Within the FAs, BNIP-2 regulates the nano-organization of focal adhesion kinase (FAK), and the dynamics of FAK, paxillin, and vinculin. Depletion of BNIP-2 resulted in altered focal adhesion numbers and sizes per cell, reduced traction force, and decreased FA sensitivity for mechanosensing. At the molecular level, the loss of BNIP-2 disrupted the FAK-paxillin signaling axis, where FAK inhibition reproduces the effects of BNIP-2 loss by impairing the phosphorylation of both FAK and paxillin. Mechanistically, BNIP-2 preferentially binds to constitutively active FAK and acts as a molecular scaffold to mediate interactions between FAK and paxillin and between paxillin and vinculin. We have validated BNIP-2's role in the FAK-paxillin signaling axis in human embryonic stem cells (hESC). Furthermore, we showed that depletion of BNIP-2 resulted in changes in signature gene targets at the cardiac progenitor stage of differentiation. In summary, we showed that the intricate interplay of FA nanoarchitecture and dynamics, governed by BNIP-2, is crucial for force transduction and biochemical signaling in driving cardiomyoblast differentiation.
粘着斑(FAs)是承受力的多蛋白复合物,其纳米级组织和信号传导对于细胞生长和分化至关重要。然而,粘着斑成分的具体组织方式以实现粘着斑蛋白的时空激活从而进行力感知和转导仍不清楚。在本研究中,我们揭示了粘着斑蛋白纳米结构的复杂性,并且其动力学由分子支架蛋白BNIP - 2协调,以启动心肌母细胞分化的下游信号转导。在粘着斑内,BNIP - 2调节粘着斑激酶(FAK)的纳米组织以及FAK、桩蛋白和纽蛋白的动力学。BNIP - 2的缺失导致每个细胞的粘着斑数量和大小改变、牵引力降低以及粘着斑对机械感知的敏感性降低。在分子水平上,BNIP - 2的缺失破坏了FAK - 桩蛋白信号轴,其中FAK抑制通过损害FAK和桩蛋白的磷酸化再现了BNIP - 2缺失的效应。机制上,BNIP - 2优先结合组成型活性FAK,并作为分子支架介导FAK与桩蛋白之间以及桩蛋白与纽蛋白之间的相互作用。我们已经在人类胚胎干细胞(hESC)中验证了BNIP - 2在FAK - 桩蛋白信号轴中的作用。此外,我们表明BNIP - 2的缺失导致分化的心脏祖细胞阶段特征性基因靶点的变化。总之,我们表明由BNIP - 2控制的粘着斑纳米结构和动力学的复杂相互作用对于驱动心肌母细胞分化中的力转导和生化信号传导至关重要。