Suppr超能文献

整合机器学习模型与多组学分析以解读膀胱癌有丝分裂灾难异质性的预后意义。

Integrating machine learning models with multi-omics analysis to decipher the prognostic significance of mitotic catastrophe heterogeneity in bladder cancer.

作者信息

Dai Haojie, Yu Zijie, Zhao You, Jiang Ke, Hang Zhenyu, Huang Xin, Ma Hongxiang, Wang Li, Li Zihao, Wu Ming, Fan Jun, Luo Weiping, Qin Chao, Zhou Weiwen, Nie Jun

机构信息

Liyang Branch of the First Affiliated Hospital of Nanjing Medical University, The Affliated Liyang People's Hospital of Kangda College of Nanjing Medical University, Changzhou, Jiangsu, China.

The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

Biol Direct. 2025 Apr 21;20(1):56. doi: 10.1186/s13062-025-00650-x.

Abstract

BACKGROUND

Mitotic catastrophe is well-known as a major pathway of endogenous tumor death, but the prognostic significance of its heterogeneity regarding bladder cancer (BLCA) remains unclear.

METHODS

Our study focused on digging deeper into the TCGA and GEO databases. Through differential expression analysis as well as Weighted Gene Co-expression Network Analysis (WGCNA), we identified dysregulated mitotic catastrophe-associated genes, followed by univariate cox regression as well as ten machine learning algorithms to construct robust prognostic models. Based on prognostic stratification, we revealed intergroup differences by enrichment analysis, immune infiltration assessment, and genomic variant analysis. Subsequently by multivariate cox regression as well as survshap(t) model we screened core prognostic gene and identified it by Mendelian randomization. Integration of qRT-PCR, immunohistochemistry, and single-cell analysis explored the core gene expression landscape. In addition, we explored the ceRNA axis containing upstream non-coding RNAs after detailed analysis of pathway activation, immunoregulation, and methylation functions of the core genes. Finally, we performed drug screening and molecular docking experiments based on the core gene in the DSigDB database.

RESULTS

Our efforts culminated in the establishment of an accurate prognostic model containing 16 genes based on Coxboost as well as the Random Survival Forest (RSF) algorithm. Detailed analysis from multiple perspectives revealed a strong link between model scores and many key indicators: pathway activation, immune infiltration landscape, genomic variant landscape, and personalized treatment. Subsequently ANLN was identified as the core of the model, and prognostic analysis revealed that it portends a poor prognosis, further corroborated by Mendelian randomization analysis. Interestingly, ANLN expression was significantly upregulated in cancer cells and specifically clustered in epithelial cells and provided multiple pathways to mediate cell division. In addition, ANLN regulated immune infiltration patterns and was also inseparable from overall methylation levels. Further analysis revealed potential regulation of the MIR4435-2HG, hsa-miR-15a-5p, ANLN axis and highlighted a range of potential therapeutic agents including Phytoestrogens.

CONCLUSION

The model we developed was a powerful predictive tool for BLCA prognosis and revealed the impact of mitotic catastrophe heterogeneity on BLCA in multiple dimensions, which then guided clinical decision-making. Furthermore, we highlighted the potential of ANLN as a BLCA target.

摘要

背景

有丝分裂灾难是内源性肿瘤死亡的主要途径,但它在膀胱癌(BLCA)中的异质性的预后意义仍不清楚。

方法

我们的研究重点深入挖掘TCGA和GEO数据库。通过差异表达分析以及加权基因共表达网络分析(WGCNA),我们确定了失调的有丝分裂灾难相关基因,随后进行单变量Cox回归以及十种机器学习算法来构建稳健的预后模型。基于预后分层,我们通过富集分析、免疫浸润评估和基因组变异分析揭示了组间差异。随后通过多变量Cox回归以及survshap(t)模型,我们筛选出核心预后基因并通过孟德尔随机化进行鉴定。整合qRT-PCR、免疫组织化学和单细胞分析探索了核心基因表达谱。此外,在详细分析核心基因的通路激活、免疫调节和甲基化功能后,我们探索了包含上游非编码RNA的ceRNA轴。最后,我们基于DSigDB数据库中的核心基因进行了药物筛选和分子对接实验。

结果

我们的努力最终建立了一个基于Coxboost以及随机生存森林(RSF)算法的包含16个基因的准确预后模型。从多个角度进行的详细分析揭示了模型评分与许多关键指标之间的紧密联系:通路激活、免疫浸润谱、基因组变异谱和个性化治疗。随后,ANLN被确定为模型的核心,预后分析表明它预示着不良预后,孟德尔随机化分析进一步证实了这一点。有趣的是,ANLN在癌细胞中表达显著上调,并且在上皮细胞中特异性聚集,并提供了多种介导细胞分裂的途径。此外,ANLN调节免疫浸润模式,并且也与整体甲基化水平密不可分。进一步分析揭示了MIR4435-2HG、hsa-miR-15a-5p、ANLN轴的潜在调节作用,并突出了一系列潜在治疗药物,包括植物雌激素。

结论

我们开发的模型是预测BLCA预后的有力工具,并从多个维度揭示了有丝分裂灾难异质性对BLCA的影响,从而指导临床决策。此外,我们强调了ANLN作为BLCA靶点的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e91b/12012998/f14b4b70513b/13062_2025_650_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验