Habte Frezghi, Natarajan Arutselvan
Department of Radiology, Stanford School of Medicine, Stanford University, Stanford, CA, United States.
Front Med (Lausanne). 2025 Apr 7;12:1548132. doi: 10.3389/fmed.2025.1548132. eCollection 2025.
Antibodies (Abs) and their fragments can be labeled with PET radioisotope (immunoPET) for diagnostic imaging. Compared to the conventional FDG-PET, immunoPET can be designed to target cancer-specific antigen expression levels for various tumors and metastasis, which makes immunoPET (iPET) a powerful technique for molecular imaging and therapy monitoring. However, achieving the optimal dose to minimize radioisotope toxicity without compromising the visualization of the smallest tumor is challenging. To find an ultra-minimal tracer dose, we have developed a novel iPET with an intact rituximab Ab labeled with Cu to image human CD20 (hCD20) in a transgenic mouse model for non-Hodgkin's lymphoma (NHL) imaging. Using phantom and mouse models, we optimized the minimal dose that can be administered in a mouse using a high-specific iPET tracer prepared from Cu-rituximab. A phantom study was used to characterize the scanner capability and limit for imaging using low doses. An ultra-minimal dose administered in a mouse model showed good image quality with high signal-to-noise ratio without compromising quantitative accuracy. The phantom study with below 50 μCi dose level indicated a slight increase in variability due to reduced dose specifically for target regions with lower uptakes (<3:1 ratio) relative to the background. study performed with four groups of mice ( = 3), each group injected with ~90, ~50, ~25, and ~10 μCi showed a linear increase of tracer uptake measured as percentage injected dose per gram (%ID/g). This tracer has shown high specific uptake in the spleen, where most B-cells are engineered to express hCD20. The study demonstrated that the lowest dose threshold limit for Cu-antibody-based iPET was about 25 μCi while achieving a high-quality image and quantitative accuracy.
抗体(Abs)及其片段可用正电子发射断层扫描(PET)放射性同位素进行标记(免疫PET)用于诊断成像。与传统的氟代脱氧葡萄糖PET相比,免疫PET可针对各种肿瘤和转移灶的癌症特异性抗原表达水平进行设计,这使得免疫PET(iPET)成为分子成像和治疗监测的强大技术。然而,在不影响最小肿瘤可视化的前提下,找到使放射性同位素毒性最小化的最佳剂量具有挑战性。为了找到超最小示踪剂剂量,我们开发了一种新型iPET,其完整的利妥昔单抗抗体用铜标记,用于在非霍奇金淋巴瘤(NHL)成像的转基因小鼠模型中对人CD20(hCD20)进行成像。使用体模和小鼠模型,我们使用由铜-利妥昔单抗制备的高特异性iPET示踪剂优化了可在小鼠体内给药的最小剂量。体模研究用于表征扫描仪使用低剂量成像的能力和极限。在小鼠模型中给予的超最小剂量显示出良好的图像质量和高信噪比,同时不影响定量准确性。在低于50μCi剂量水平的体模研究表明,由于剂量降低,特别是对于相对于背景摄取较低(<3:1比率)的靶区域,变异性略有增加。对四组小鼠(每组n = 3)进行的研究表明,每组分别注射约90、约50、约25和约10μCi后,示踪剂摄取以每克注射剂量的百分比(%ID/g)衡量呈线性增加。这种示踪剂在脾脏中显示出高特异性摄取,其中大多数B细胞被设计表达hCD20。该研究表明,基于铜抗体的iPET的最低剂量阈值极限约为25μCi,同时可实现高质量图像和定量准确性。