Keeler Andrew, Luce Jason, Lehmann Mathias, Roeske John C, Kang Hyejoo
Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University of Chicago, Maywood, Illinois, USA.
Varian Imaging Laboratory, Baden, Switzerland.
J Appl Clin Med Phys. 2025 Jun;26(6):e70083. doi: 10.1002/acm2.70083. Epub 2025 Apr 22.
Dual-energy cone-beam CT (DE-CBCT) has become subject of recent interest due to the ability to produce virtual monoenergetic images (VMIs) with improved soft-tissue contrast and reduced nonuniformity artifacts. However, efficient production and optimization of VMIs remains an under-explored part of DE-CBCT's application.
This work reports on the creation of DISC (dual-energy image synthesizer for CBCT), a newly developed, open-source user interface to efficiently produce and optimize VMIs with the eventual goal of clinical application.
Two sets of CBCT scans of a Catphan 604 phantom were acquired sequentially (80 and 140 kVp) using the on-board imager of a commercial linear accelerator. Material decomposition into aluminum (Al) and polymethyl-methylacrylate (PMMA) basis materials in the projection-domain and reconstruction with the Feldkamp-Davis-Kress (FDK) algorithm of basis material images were performed in the open-source Tomographic Iterative GPU-based REconstruction (TIGRE) Matlab toolkit. Using DISC, a series of VMIs were generated via linear combinations of the basis material images without reconstructing individual VMIs at different energies. Hounsfield units (HU) were computed using an energy-dependent fit over the range of 20-150 keV. VMI energies that maximized contrast-to-noise ratio (CNR) for various materials and minimized nonuniformity artifacts were determined with 1 keV precision.
Optimal CNR values for all material inserts ranged from 55 to 62 keV, showing an average CNR enhancement of 25% over the polychromatic images. Optimal uniformity is observed at 65 keV. Computed HUs show good agreement with theoretical values, with root-mean-squared error of 16 HU across the range of energies and materials.
A spectrum of VMIs from DE-CBCT was efficiently produced with 1 keV precision using DISC. Optimal energies for both soft tissue contrast and nonuniformity reduction were quickly computed with high precision. Future work will expand DISC to generate other DE-derived image types and will explore the acquisition and optimization of DE patient images.
双能锥形束CT(DE-CBCT)因能够生成具有改善的软组织对比度和减少的不均匀伪影的虚拟单能图像(VMI)而成为近期研究的热点。然而,VMI的高效生成和优化仍是DE-CBCT应用中尚未充分探索的部分。
本研究报告了DISC(用于CBCT的双能图像合成器)的创建,这是一种新开发的开源用户界面,旨在高效生成和优化VMI,最终目标是实现临床应用。
使用商用直线加速器的机载成像仪,依次采集Catphan 604体模的两组CBCT扫描图像(80和140 kVp)。在基于GPU的开源断层迭代重建(TIGRE)Matlab工具包中,在投影域将材料分解为铝(Al)和聚甲基丙烯酸甲酯(PMMA)基材料,并使用基材料图像的费尔德坎普-戴维斯-克雷斯(FDK)算法进行重建。使用DISC,通过基材料图像的线性组合生成一系列VMI,而无需在不同能量下重建单个VMI。在20 - 150 keV范围内,使用能量依赖拟合计算亨氏单位(HU)。以1 keV的精度确定了使各种材料的对比度噪声比(CNR)最大化并使不均匀伪影最小化的VMI能量。
所有材料插入物的最佳CNR值范围为55至62 keV,与多色图像相比,平均CNR提高了25%。在65 keV时观察到最佳均匀性。计算得到的HU与理论值显示出良好的一致性,在整个能量和材料范围内,均方根误差为16 HU。
使用DISC以1 keV的精度高效生成了来自DE-CBCT的一系列VMI。快速高精度地计算出了软组织对比度和减少不均匀性的最佳能量。未来的工作将扩展DISC以生成其他基于双能的图像类型,并将探索双能患者图像的采集和优化。