Akintunde Akinlade, Bayati Parvin, Row Hyeongjoo, Mallory Stewart A
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720, USA.
J Chem Phys. 2025 Apr 28;162(16). doi: 10.1063/5.0248772.
Single-file diffusion (SFD) is a key mechanism underlying transport phenomena in confined physical and biological systems. In a typical SFD process, microscopic particles are restricted to moving in a narrow channel where they cannot pass one another, resulting in constrained motion and anomalous long-time diffusion. In this study, we use Brownian dynamics simulations and analytical theory to investigate the SFD of athermal active Brownian particles (ABPs)-a minimal model of active colloids. Building on prior work [Schiltz-Rouse et al., Phys. Rev. E 108, 064601 (2023)], where the kinetic temperature, pressure, and compressibility of the single-file ABP system were derived, we develop an accurate analytical expression for the mean square displacement (MSD) of a tagged particle. We find that the MSD exhibits ballistic behavior at short times, governed by the reduced kinetic temperature of the system. At long times, the characteristic subdiffusive scaling of SFD, [⟨(Δx)2⟩∼ t1/2], is preserved. However, self-propulsion introduces significant changes to the 1D-mobility, which we directly relate to the system's compressibility. Furthermore, we demonstrate that the generalized 1D-mobility, originally proposed by Kollmann for equilibrium systems [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)], can be extended to active systems with minimal modification. These findings provide a framework for understanding particle transport in active systems and for tuning transport properties at the microscale, particularly in geometries where motion is highly restricted.
单分子扩散(SFD)是受限物理和生物系统中传输现象背后的关键机制。在典型的SFD过程中,微观粒子被限制在一个狭窄的通道中移动,在那里它们不能相互通过,从而导致受限运动和异常的长时间扩散。在本研究中,我们使用布朗动力学模拟和解析理论来研究无热活性布朗粒子(ABP)的SFD——活性胶体的一个最小模型。基于之前的工作[Schiltz-Rouse等人,《物理评论E》108, 064601 (2023)],其中推导出了单分子ABP系统的动力学温度、压力和压缩性,我们为标记粒子的平均平方位移(MSD)开发了一个精确的解析表达式。我们发现,MSD在短时间内表现出弹道行为,由系统的折合动力学温度控制。在长时间内,SFD的特征亚扩散标度[⟨(Δx)2⟩∼ t1/2]得以保留。然而,自推进对一维迁移率引入了显著变化,我们将其直接与系统的压缩性联系起来。此外,我们证明,最初由科尔曼为平衡系统提出的广义一维迁移率[M. 科尔曼,《物理评论快报》90, 180602 (2003)],可以在最小修改的情况下扩展到活性系统。这些发现为理解活性系统中的粒子传输以及在微观尺度上调节传输性质提供了一个框架,特别是在运动受到高度限制的几何结构中。