Markle Jordyn M, Neal Tarynn D, Kantzer Hania S, Pielak Gary J
Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA.
Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, North Carolina, USA.
Protein Sci. 2025 May;34(5):e70126. doi: 10.1002/pro.70126.
The protein concentration in cells can reach 300 g/L. These crowded conditions affect protein stability. Classic crowding theories predict entropically driven stabilization, which occurs via steric repulsion, but growing evidence shows a role for non-covalent chemical interactions. To aid our understanding of physiologically relevant crowding, we used NMR-detected H-H exchange to examine a simple, semi-reductionist system: protein self-crowding at the residue level using the widely studied model globular protein, GB1 (the B1 domain streptococcal protein G) at concentrations up to its solubility limit, 100 g/L. The surprising result is that self-crowding stabilizes some residues but destabilizes others, contradicting predictions. Two other observations are also contradictory. First, temperature-dependence data show that stabilization can arise enthalpically, not just entropically. Second, concentration-dependence data show destabilization often increases with increasing concentration. These results show a key role for chemical interactions. More specifically, self-crowding increases the free energy required to expose those residues that are only exposed upon complete unfolding, and stabilization of these globally unfolding residues increases with GB1 concentration, a result we attribute to repulsive chemical interactions between GB1 molecules. On the other hand, residues exposed upon local unfolding tend to be destabilized, with destabilization increasing with concentration, a result we attribute to attractive chemical interactions between GB1 molecules.
细胞中的蛋白质浓度可达到300克/升。这些拥挤的环境会影响蛋白质的稳定性。经典的拥挤理论预测会通过空间排斥发生熵驱动的稳定化,但越来越多的证据表明非共价化学相互作用也起到了作用。为了帮助我们理解生理相关的拥挤现象,我们使用核磁共振检测的氢-氢交换来研究一个简单的、半还原论的系统:使用广泛研究的球状模型蛋白GB1(链球菌蛋白G的B1结构域),在达到其溶解度极限(100克/升)的浓度下,在残基水平上进行蛋白质自聚集。令人惊讶的结果是,自聚集使一些残基稳定,但使另一些残基不稳定,这与预测相矛盾。另外两个观察结果也相互矛盾。第一,温度依赖性数据表明,稳定化不仅可以通过熵驱动,也可以通过焓驱动产生。第二,浓度依赖性数据表明,不稳定化通常会随着浓度的增加而增加。这些结果表明了化学相互作用的关键作用。更具体地说,自聚集增加了暴露那些仅在完全展开时才暴露的残基所需的自由能,并且这些全局展开残基的稳定化随着GB1浓度的增加而增加,我们将这一结果归因于GB1分子之间的排斥性化学相互作用。另一方面,局部展开时暴露的残基往往会变得不稳定,且不稳定化程度随浓度增加,我们将这一结果归因于GB1分子之间的吸引性化学相互作用。