Bakhet Shahd, Mardosaitė Rasa, Ahmed Baba Mohamed, Tamulevičienė Asta, Abakevičienė Brigita, Klinavičius Tomas, Dagilis Kristupas, Račkauskas Simas, Tamulevičius Sigitas, Lelešius Raimundas, Zienius Dainius, Šalomskas Algirdas, Šmits Krišja Nis, Tamulevičius Tomas
Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania.
Department of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania.
ACS Appl Mater Interfaces. 2025 May 7;17(18):26431-26444. doi: 10.1021/acsami.5c03330. Epub 2025 Apr 22.
High-efficiency antiviral surfaces can be an effective means of fighting viral diseases, such as the recent COVID-19 pandemic. Copper and copper oxides, their nanoparticles (NPs) (CuNPs), and coatings are among the effective antiviral materials having internal and external biocidal effects on viruses. In this work, CuNP colloids were produced via femtosecond laser ablation of the metal target in water, a photophysical, cost-effective green synthesis alternative utilizing sodium citrate surfactant stabilizing the NPs. Raman spectroscopy and X-ray diffraction studies confirmed that the 32 nm mean size CuNPs are mixtures of mainly metallic copper and copper(I) oxide. Polyvinyl butyral was utilized as the binding agent for the CuNPs deposited via high-throughput spray-coating technology. The virucidal efficacy of such coatings containing Cu content ranging from 2.9 to 11.2 atom % was confirmed against animal-origin coronavirus containing ribonucleic acid, the agent of avian infectious bronchitis (IBV), and herpesvirus containing DNA, the agent of bovine herpesvirus (BoHV-1) infection. It was demonstrated that after a short time of exposure, the Cu NP-based coatings do not have a toxic effect on the cell cultures while demonstrating a negative effect on the biological activity of both model viruses that was confirmed by quantification of the viruses via the determination of tissue culture infectious dose (TCID) virus titer and their viral nucleic acids via determination of threshold cycle (Ct) employing real-time polymerase chain reaction analysis. The assays showed that the decrease in TCID virus titer and increase in Ct values correlated with Cu content in Cu NP-based coatings for both investigated viruses. Contact with coatings decreased IBV and BoHV-1 numbers from 99.42% to 100.00% and from 98.65% to 99.96%, respectively. These findings suggest that CuNPs show inhibitory effects leading to the inactivation of viruses and their nuclei regardless of the presence of a viral envelope.
高效抗病毒表面可能是对抗病毒性疾病的有效手段,比如近期的新冠疫情。铜及其氧化物、它们的纳米颗粒(CuNP)以及涂层是对病毒具有内外杀菌作用的有效抗病毒材料。在这项工作中,通过飞秒激光在水中烧蚀金属靶材制备了CuNP胶体,这是一种利用柠檬酸钠表面活性剂稳定纳米颗粒的光物理、经济高效的绿色合成方法。拉曼光谱和X射线衍射研究证实,平均粒径为32 nm的CuNP主要是金属铜和氧化亚铜的混合物。聚乙烯醇缩丁醛被用作通过高通量喷涂技术沉积的CuNP的粘合剂。已证实,此类含铜量在2.9至11.2原子%之间的涂层对含核糖核酸的动物源冠状病毒(禽传染性支气管炎病毒,IBV)和含DNA的疱疹病毒(牛疱疹病毒,BoHV - 1)具有杀病毒效力。结果表明,短时间接触后,基于CuNP的涂层对细胞培养物没有毒性作用,同时对两种模型病毒的生物活性都有负面影响,这通过实时聚合酶链反应分析测定阈值循环(Ct)来定量病毒核酸以及通过测定组织培养感染剂量(TCID)病毒滴度来定量病毒得到了证实。试验表明,对于两种被研究的病毒,TCID病毒滴度的降低和Ct值的增加与基于CuNP的涂层中的铜含量相关。与涂层接触后,IBV和BoHV - 1的数量分别从99.42%降至100.00%和从98.65%降至99.96%。这些发现表明,无论病毒包膜是否存在,CuNP都显示出抑制作用,导致病毒及其核失活。
ACS Appl Mater Interfaces. 2025-5-7
J Virol Methods. 2020-1
Molecules. 2023-9-18
Environ Health (Wash). 2023-5-30
Int J Environ Res Public Health. 2022-12-19
J Appl Biomater Funct Mater. 2022
Int J Mol Sci. 2022-1-21