Suppr超能文献

肺炎链球菌基因组工程中决定性的碱基编辑

Make-or-break prime editing for genome engineering in Streptococcus pneumoniae.

作者信息

Rengifo-Gonzalez Monica, Mazzuoli Maria-Vittoria, Janssen Axel B, Rueff Anne-Stéphanie, Burnier Jessica, Liu Xue, Veening Jan-Willem

机构信息

Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-, Lausanne, Switzerland.

Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China.

出版信息

Nat Commun. 2025 Apr 23;16(1):3796. doi: 10.1038/s41467-025-59068-8.

Abstract

CRISPR-Cas9 has revolutionized genome engineering by allowing precise introductions of DNA double-strand breaks (DSBs). However, genome engineering in bacteria is still a complex, multi-step process requiring a donor DNA template for repair of DSBs. Prime editing circumvents this need as the repair template is indirectly provided within the prime editing guide RNA (pegRNA). Here, we developed make-or-break Prime Editing (mbPE) that allows for precise and effective genetic engineering in the opportunistic human pathogen Streptococcus pneumoniae. In contrast to traditional prime editing in which a nicking Cas9 is employed, mbPE harnesses wild type Cas9 in combination with a pegRNA that destroys the seed region or protospacer adjacent motif. Since most bacteria poorly perform template-independent end joining, correctly genome-edited clones are selectively enriched during mbPE. We show that mbPE is RecA-independent and can be used to introduce point mutations, deletions and targeted insertions, including protein tags such as a split luciferase, at selection efficiencies of over 93%. mbPE enables sequential genome editing, is scalable, and can be used to generate pools of mutants in a high-throughput manner. The mbPE system and pegRNA design guidelines described here will ameliorate future bacterial genome editing endeavors.

摘要

CRISPR-Cas9通过允许精确引入DNA双链断裂(DSB),彻底改变了基因组工程。然而,细菌中的基因组工程仍然是一个复杂的多步骤过程,需要供体DNA模板来修复DSB。碱基编辑规避了这一需求,因为修复模板间接提供在碱基编辑引导RNA(pegRNA)中。在这里,我们开发了成败型碱基编辑(mbPE),它能够在机会性人类病原体肺炎链球菌中进行精确有效的基因工程。与使用切口酶Cas9的传统碱基编辑不同,mbPE利用野生型Cas9与破坏种子区域或原间隔相邻基序的pegRNA相结合。由于大多数细菌在非模板依赖性末端连接方面表现不佳,因此在mbPE过程中能够选择性地富集正确进行基因组编辑的克隆。我们表明,mbPE不依赖RecA,可用于引入点突变、缺失和靶向插入,包括如分裂荧光素酶等蛋白质标签,选择效率超过93%。mbPE能够进行连续的基因组编辑,具有可扩展性,并且可用于高通量方式生成突变体库。本文描述的mbPE系统和pegRNA设计指南将改善未来的细菌基因组编辑工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db5/12015366/1e5cd4df6f1a/41467_2025_59068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验